Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1976 Nov;262(2):477–487. doi: 10.1113/jphysiol.1976.sp011606

The responses to nerve stimulation of the salivary gland of Nauphoeta cinerea Olivier.

B L Ginsborg, C R House
PMCID: PMC1307654  PMID: 994045

Abstract

A study has been made with intracellular electrodes of the responses of acini of the salivary gland of Nauphoeta cinerea Olivier to salivary duct nerve stimulation. The gland is a paired structure and offers the possibility of investigating the interaction between ipsi- and contralateral nerve stimulation. 2. The characteristics of the responses are as previously described for field stimulation (House, 1973). The latency is of the order of 1 sec and almost independent of the amplitude of the response which may attain a hyperpolarization of about 80 mV. The depolarization which sometimes follows can be disassociated from the preceding hyperpolarization and is presumably an independent response. 3. The stimulus-response relationship shows that acini are multiply innervated. Those close to the mid line recieve axons from both ipsi- and contralateral salivary duct nerves. The response to a test stimulus T can be augmented by an immediately preceding conditioning stimulus C, the joint response being greater than the sum of the separate responses. This effect occurs even when C and T are delivered to different nerves. For longer intervals between C and T, the response to T is depressed.

Full text

PDF
477

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ascher P. Inhibitory and excitatory effects of dopamine on Aplysia neurones. J Physiol. 1972 Aug;225(1):173–209. doi: 10.1113/jphysiol.1972.sp009933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bland K. P., House C. R. Function of the salivary glands of the cockroach, Nauphoeta cinerea. J Insect Physiol. 1971 Nov;17(11):2069–2084. doi: 10.1016/0022-1910(71)90168-5. [DOI] [PubMed] [Google Scholar]
  3. Gerschenfeld H. M. Chemical transmission in invertebrate central nervous systems and neuromuscular junctions. Physiol Rev. 1973 Jan;53(1):1–119. doi: 10.1152/physrev.1973.53.1.1. [DOI] [PubMed] [Google Scholar]
  4. Ginsborg B. L., House C. R., Silinsky E. M. Conductance changes associated with the secretory potential in the cockroach salivary gland. J Physiol. 1974 Feb;236(3):723–731. doi: 10.1113/jphysiol.1974.sp010462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Green R. D., Dale M. M., Haylett D. G. Effect of adrenergic amines on the membrane potential of guinea-pig liver parenchymal cells in short term tissue culture. Experientia. 1972 Sep 15;28(9):1073–1074. doi: 10.1007/BF01918681. [DOI] [PubMed] [Google Scholar]
  6. Hartzell H. C., Kuffler S. W., Yoshikami D. Post-synaptic potentiation: interaction between quanta of acetylcholine at the skeletal neuromuscular synapse. J Physiol. 1975 Oct;251(2):427–463. doi: 10.1113/jphysiol.1975.sp011102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hirst G. D., Silinsky E. M. Some effects of 5-hydroxytryptamine, dopamine and noradrenaline on neurones in the submucous plexus of guinea-pig small intestine. J Physiol. 1975 Oct;251(3):817–832. doi: 10.1113/jphysiol.1975.sp011124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. House C. R. Intracellular recording of secretory potentials in a "mixed" salivary gland. Experientia. 1975 Aug 15;31(8):904–906. doi: 10.1007/BF02358842. [DOI] [PubMed] [Google Scholar]
  9. KATZ B., THESLEFF S. A study of the desensitization produced by acetylcholine at the motor end-plate. J Physiol. 1957 Aug 29;138(1):63–80. doi: 10.1113/jphysiol.1957.sp005838. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kehoe J. Three acetylcholine receptors in Aplysia neurones. J Physiol. 1972 Aug;225(1):115–146. doi: 10.1113/jphysiol.1972.sp009931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Nishiyama A., Petersen O. H. Pancreatic acinar cells: ionic dependence of acetylcholine-induced membrane potential and resistance change. J Physiol. 1975 Jan;244(2):431–465. doi: 10.1113/jphysiol.1975.sp010807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Purves R. D. Muscarinic excitation: a microelectrophoretic study on cultured smooth muscle cells. Br J Pharmacol. 1974 Sep;52(1):77–86. doi: 10.1111/j.1476-5381.1974.tb09689.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Rang H. P. Acetylcholine receptors. Q Rev Biophys. 1974 Jul;7(3):283–399. doi: 10.1017/s0033583500001463. [DOI] [PubMed] [Google Scholar]
  14. Shimahara T., Tauc L. Heterosynaptic facilitation in the giant cell of Aplysia. J Physiol. 1975 May;247(2):321–341. doi: 10.1113/jphysiol.1975.sp010934. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Whitehead A. T. Innervation of the American cockroach salivary gland: neurophysiological and pharmacological investigations. J Insect Physiol. 1973 Oct;19(10):1961–1970. doi: 10.1016/0022-1910(73)90190-x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES