Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1976 Nov;262(3):679–698. doi: 10.1113/jphysiol.1976.sp011615

Chloride transport in human erythrocytes and ghosts: a quantitative comparison.

J Funder, J O Wieth
PMCID: PMC1307667  PMID: 13204

Abstract

1. Homogeneous preparations of resealed ghosts with intracellular KCl concentrations between 15 and 900 mM could be prepared. Virtually all ghosts sealed to chloride. The chloride transport system was found not to be damaged: a quantitative comparison of the self-exchange of 36Cl- across intact and resealed membranes showed that both the transport capacity and a number of characteristic properties were identical (saturation kinetics, temperature dependence and the effect of inhibitors). 2. Due to the absence of intracellular titratable buffers intracellular chloride concentration in ghosts vary only slightly between pH5 and 11. The unidirectional exchange flux was constant between pH 7 and 11, showing that the transport system does not have a functionally important titratable group in the alkaline range, as previously assumed. The decrease of transport below pH 7 is similar in intact erythrocytes and ghosts. 3. Mean cellular volume of the resealed ghosts was a function of the amount of KCl added at 'reversal', before the ghosts are sealed. The ghosts shrank by osmosis when KCl was added to the suspension of 'unsealed' ghosts. The reflexion coefficient of sucrose (and therefore the osmotic effect) is larger than that of KCl. It was, therefore, possible to demonstrate that volume changes do not affect the chloride transport across the human red cell membrane. Unidirectional chloride fluxes at a KCl concentration of 165 mM were independent of ghost volume (100-40 mum3).

Full text

PDF
679

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bodemann H., Passow H. Factors controlling the resealing of the membrane of human erythrocyte ghosts after hypotonic hemolysis. J Membr Biol. 1972;8(1):1–26. doi: 10.1007/BF01868092. [DOI] [PubMed] [Google Scholar]
  2. Cabantchik Z. I., Balshin M., Breuer W., Markus H., Rothstein A. A comparison of intact human red blood cells and resealed and leaky ghosts with respect to their interactions with surface labelling agents and proteolytic enzymes. Biochim Biophys Acta. 1975 Apr 8;382(4):621–633. doi: 10.1016/0005-2736(75)90227-8. [DOI] [PubMed] [Google Scholar]
  3. Cabantchik Z. I., Rothstein A. Membrane proteins related to anion permeability of human red blood cells. I. Localization of disulfonic stilbene binding sites in proteins involved in permeation. J Membr Biol. 1974;15(3):207–226. doi: 10.1007/BF01870088. [DOI] [PubMed] [Google Scholar]
  4. Cass A., Dalmark M. Equilibrium dialysis of ions in nystatin-treated red cells. Nat New Biol. 1973 Jul 11;244(132):47–49. doi: 10.1038/newbio244047a0. [DOI] [PubMed] [Google Scholar]
  5. Dalmark M. Chloride transport in human red cells. J Physiol. 1975 Aug;250(1):39–64. doi: 10.1113/jphysiol.1975.sp011042. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dalmark M. Effects of halides and bicarbonate on chloride transport in human red blood cells. J Gen Physiol. 1976 Feb;67(2):223–234. doi: 10.1085/jgp.67.2.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dalmark M., Wieth J. O. Temperature dependence of chloride, bromide, iodide, thiocyanate and salicylate transport in human red cells. J Physiol. 1972 Aug;224(3):583–610. doi: 10.1113/jphysiol.1972.sp009914. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. GARDOS G. Akkumulation der Kaliumionen durch menschliche Blutkörperchen. Acta Physiol Acad Sci Hung. 1954;6(2-3):191–199. [PubMed] [Google Scholar]
  9. Gunn R. B., Dalmark M., Tosteson D. C., Wieth J. O. Characteristics of chloride transport in human red blood cells. J Gen Physiol. 1973 Feb;61(2):185–206. doi: 10.1085/jgp.61.2.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gunn R. B., Wieth J. O., Tosteson D. C. Some effects of low pH on chloride exchange in human red blood cells. J Gen Physiol. 1975 Jun;65(6):731–749. doi: 10.1085/jgp.65.6.731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. HOFFMAN J. F. Physiological characteristics of human red blood cell ghosts. J Gen Physiol. 1958 Sep 20;42(1):9–28. doi: 10.1085/jgp.42.1.9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. HOFFMAN J. F. The active transport of sodium by ghosts of human red blood cells. J Gen Physiol. 1962 May;45:837–859. doi: 10.1085/jgp.45.5.837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kornberg R. D., McConnell H. M. Inside-outside transitions of phospholipids in vesicle membranes. Biochemistry. 1971 Mar 30;10(7):1111–1120. doi: 10.1021/bi00783a003. [DOI] [PubMed] [Google Scholar]
  14. LEFEVRE P. G. Persistence in erythrocyte ghosts of mediated sugar transport. Nature. 1961 Sep 2;191:970–972. doi: 10.1038/191970a0. [DOI] [PubMed] [Google Scholar]
  15. LaCelle P. L. Effect of sphering on erythrocyte deformability. Biorheology. 1972 Jun;9(2):51–59. doi: 10.3233/bir-1972-9202. [DOI] [PubMed] [Google Scholar]
  16. Lepke S., Passow H. Asymmetric inhibition by phlorizin of sulfate movements across the red blood cell membrane. Biochim Biophys Acta. 1973 Mar 16;298(2):529–533. doi: 10.1016/0005-2736(73)90379-9. [DOI] [PubMed] [Google Scholar]
  17. Pagano R., Thompson T. E. Spherical lipid bilayer membranes: electrical and isotopic studies of ion permeability. J Mol Biol. 1968 Nov 28;38(1):41–57. doi: 10.1016/0022-2836(68)90127-7. [DOI] [PubMed] [Google Scholar]
  18. Rothstein A., Cabantchik Z. I., Knauf P. Mechanism of anion transport in red blood cells: role of membrane proteins. Fed Proc. 1976 Jan;35(1):3–10. [PubMed] [Google Scholar]
  19. Schwoch G., Passow H. Preparation and properties of human erythrocyte ghosts. Mol Cell Biochem. 1973 Dec 15;2(2):197–218. doi: 10.1007/BF01795474. [DOI] [PubMed] [Google Scholar]
  20. Staros J. V., Haley B. E., Richards F. M. Human erythrocytes and resealed ghosts. A comparison of membrane topology. J Biol Chem. 1974 Aug 10;249(15):5004–5007. [PubMed] [Google Scholar]
  21. Toyoshima Y., Thompson T. E. Chloride flux in bilayer membranes: chloride permeability in aqueous dispersions of single-walled, bilayer vesicles. Biochemistry. 1975 Apr 8;14(7):1525–1531. doi: 10.1021/bi00678a028. [DOI] [PubMed] [Google Scholar]
  22. Toyoshima Y., Thompson T. E. Chloride flux in bilayer membranes: the electrically silent chloride flux in semispherical bilayers. Biochemistry. 1975 Apr 8;14(7):1518–1524. doi: 10.1021/bi00678a027. [DOI] [PubMed] [Google Scholar]
  23. WESTERMAN M. P., PIERCE L. E., JENSEN W. N. A direct method for the quantitative measurement of red cell dimensions. J Lab Clin Med. 1961 May;57:819–824. [PubMed] [Google Scholar]
  24. Zaki L., Fasold H., Schuhmann B., Passow H. Chemical modification of membrane proteins in relation to inhibition of anion exchange in human red blood cells. J Cell Physiol. 1975 Dec;86(3 Pt 1):471–494. doi: 10.1002/jcp.1040860305. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES