Abstract
1. The short-circuit current of everted rat intestine supported on a perforated cannula proved to be stable for up to 3 hr and has been used to study competition between transportable and non-transportable sugars. 2. 4,6-O-Ethylidene-alpha-D-glucopyranose (ethylidene glucose) and 4,6-O-benzylidene-e alpha-D-glucopyranos (benzylinene glucose), two nontransportable inhibitors of the hexose transfer system in human erythrocytes, were found to reduce the short-circuit current generated by transportable sugars such as galactose or 3-O-methyl glucose. 3. These compounds were also found to reduce the basal short-circuit current established by the everted intestine in a sugar-free Krebs solution. Both types of inhibition approached saturation at the higher concentrations used. 4. Similar inhibitory properties were shown by mannose, a non-actively accumulated monosaccharide, and by the beta-disaccharides lactose and cellobiose. 5. It is suggested that this common pattern of behaviour is due to the ability of these compounds to react with the sites for active hexose transfer but without translocation by the system. The significance of the inhibition of the basal short-circuit current is briefly discussed in this context.
Full text
PDF













Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ALVAREZ A., SAS J. beta-Galactosidase changes in the developing intestinal tract of the rat. Nature. 1961 May 27;190:826–827. doi: 10.1038/190826b0. [DOI] [PubMed] [Google Scholar]
- ASANO T. METABOLIC DISTURBANCES AND SHORT-CIRCUIT CURRENT ACROSS INTESTINAL WALL OF RAT. Am J Physiol. 1964 Aug;207:415–422. doi: 10.1152/ajplegacy.1964.207.2.415. [DOI] [PubMed] [Google Scholar]
- Baker G. F., Widdas W. F. The permeation of human red cells by 4,6-O-ethylidene- -D-glucopyranose (ethylidene glucose). J Physiol. 1973 May;231(1):129–142. doi: 10.1113/jphysiol.1973.sp010224. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baker R. D., Lo C. S., Nunn A. S. Galactose fluxes across brush border of hamster jejunal epithelium: effects of mucosal anaerobiosis. J Membr Biol. 1974;19(1):55–78. doi: 10.1007/BF01869970. [DOI] [PubMed] [Google Scholar]
- Barry R. J., Eggenton J., Smyth D. H. Sodium pumps in the rat small intestine in relation to hexose transfer and metabolism. J Physiol. 1969 Oct;204(2):299–310. doi: 10.1113/jphysiol.1969.sp008914. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CLARKSON T. W., CROSS A. C., TOOLE S. Dependence on substrate of the electrical potential across the isolated gut. Nature. 1961 Jul 29;191:501–502. doi: 10.1038/191501a0. [DOI] [PubMed] [Google Scholar]
- Crane R. K., Forstner G., Eichholz A. Studies on the mechanism of the intestinal absorption of sugars. X. An effect of Na+ concentration on the apparent Michaelis constants for intestinal sugar transport, in vitro. Biochim Biophys Acta. 1965 Nov 29;109(2):467–477. doi: 10.1016/0926-6585(65)90172-x. [DOI] [PubMed] [Google Scholar]
- DOELL R. G., KRETCHMER N. Studies of small intestine during development. I. Distribution and activity of beta-galactosidase. Biochim Biophys Acta. 1962 Aug 13;62:353–362. doi: 10.1016/0006-3002(62)90097-5. [DOI] [PubMed] [Google Scholar]
- Field M., Fromm D., McColl I. Ion transport in rabbit ileal mucosa. I. Na and Cl fluxes and short-circuit current. Am J Physiol. 1971 May;220(5):1388–1396. doi: 10.1152/ajplegacy.1971.220.5.1388. [DOI] [PubMed] [Google Scholar]
- Goldner A. M., Schultz S. G., Curran P. F. Sodium and sugar fluxes across the mucosal border of rabbit ileum. J Gen Physiol. 1969 Mar;53(3):362–383. doi: 10.1085/jgp.53.3.362. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hanes C. S. Studies on plant amylases: The effect of starch concentration upon the velocity of hydrolysis by the amylase of germinated barley. Biochem J. 1932;26(5):1406–1421. doi: 10.1042/bj0261406. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KOLDOVSKY O., CHYTIL F. POSTNATAL DEVELOPMENT OF BETA-GALACTOSIDASE ACTIVITY IN THE SMALL INTESTINE OF THE RAT. EFFECT OF ADRENALECTOMY AND DIET. Biochem J. 1965 Jan;94:266–270. doi: 10.1042/bj0940266. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lyon I., Crane R. K. Studies on transmural potentials in vitro in relation to intestinal absorption. I. Apparent Michaelis constants for Na+dependent sugar transport. Biochim Biophys Acta. 1966 Feb 7;112(2):278–291. doi: 10.1016/0926-6585(66)90327-x. [DOI] [PubMed] [Google Scholar]
- NEWEY H., SANFORD P. A., SMYTH D. H., WILLIAMS A. H. THE EFFECT OF SOME ANALOGUES OF PHLORRHIZIN ON INTESTINAL HEXOSE AND FLUID TRANSFER. J Physiol. 1963 Nov;169:229–236. doi: 10.1113/jphysiol.1963.sp007252. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Novak R. A., LeFevre P. G. Interaction of sugar acetals with the human erythrocyte glucose transport system. J Membr Biol. 1974 Jul 12;17(3):383–390. doi: 10.1007/BF01870193. [DOI] [PubMed] [Google Scholar]
- Quay J. F., Armstrong W. M. Sodium and chloride transport by isolated bullfrog small intestine. Am J Physiol. 1969 Sep;217(3):694–702. doi: 10.1152/ajplegacy.1969.217.3.694. [DOI] [PubMed] [Google Scholar]
- SCHULTZ S. G., ZALUSKY R. ION TRANSPORT IN ISOLATED RABBIT ILEUM. II. THE INTERACTION BETWEEN ACTIVE SODIUM AND ACTIVE SUGAR TRANSPORT. J Gen Physiol. 1964 Jul;47:1043–1059. doi: 10.1085/jgp.47.6.1043. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SCHULTZ S. G., ZALUSKY R. The interaction between active sodium transport and active sugar transport in the isolated rabbit ileum. Biochim Biophys Acta. 1963 May 14;71:503–505. doi: 10.1016/0006-3002(63)91121-1. [DOI] [PubMed] [Google Scholar]
- SCHULTZ S. G., ZALUSKY R. Transmural potential difference, short-circuit current and sodium transport in isolated rabbit ileum. Nature. 1963 Jun 1;198:894–895. doi: 10.1038/198894a0. [DOI] [PubMed] [Google Scholar]
