Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1977 Jan;264(1):239–265. doi: 10.1113/jphysiol.1977.sp011666

The effect of lowering external sodium on the intracellular sodium activity of crab muscle fibres.

R D Vaughan-Jones
PMCID: PMC1307756  PMID: 839453

Abstract

1. Intracellular Na activity, aiNa, was continuously measured in crab (Carcinus maenas) muscle fibres using a recessed-tip Na+ -sensitive glass micro-electrode. Experiments could last up to several hours. AiNa remained stable during prolonged experiments. The mean resting aiNa was 8-4 +/- 0-02 mM (S.E. of mean for eighty-nine fibres) and the mean resting membrane potential was 65-3 mV +/- 0-3 (S.E. of mean for eighty-nine fibres). 2. Reducing [Na]o to 1/10 normal (maintaining ionic strength with equivalent amounts of either Li or Tris) caused a large and rapid fall of aiNa. There appeared to be two components of the effect, a fast and slow. The initial fast rate of decrease was about 3-5 m-mole/min decreasing to half this value in about 1 min. The rate of decrease of aiNa was not linearly related to aiNa. The size of the fast change of aiNa was related to the magnitude of the Na gradient across the membrane. 3. High concentrations (2 x 10-4m) of ouabain caused a very slow rise of aiNa by 1 or 2 mn/hr. This was equivalent to a net Na influx of between 1 and 10 p-mole/cmi. sec, depending on whether or not a correction was applied to account for the increased surface area of the fibre caused by the invaginating cleft system. 4. The response to low Nso was virtually insensitive to the removal of Ko or to prolonged reatment with high concentrations of ouabain (2 x 10-4 m; 100 min) and so could not readily be attributed to active Na/K pumping. 5. The response of aiNa to low Nao was reversibly inhibited by high concencentrations of Mn (50 mm) and by low concentrations of La (3-1 mm). La itself stimulated a rapid fall of aiNa in normal Nao.

Full text

PDF
239

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen R. D., Hinke J. A. Na + -Li + exchange in single muscle fibers of the giant barnacle. Can J Physiol Pharmacol. 1971 Oct;49(10):862–866. doi: 10.1139/y71-120. [DOI] [PubMed] [Google Scholar]
  2. Ashley C. C., Ellory J. C., Hainaut K. Calcium movements in single crustacean muscle fibres. J Physiol. 1974 Oct;242(1):255–272. doi: 10.1113/jphysiol.1974.sp010705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ashley C. C., Ellory J. C. The efflux of magnesium from single crustacean muscle fibres. J Physiol. 1972 Nov;226(3):653–674. doi: 10.1113/jphysiol.1972.sp010002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baker P. F., Blaustein M. P., Hodgkin A. L., Steinhardt R. A. The influence of calcium on sodium efflux in squid axons. J Physiol. 1969 Feb;200(2):431–458. doi: 10.1113/jphysiol.1969.sp008702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Baker P. F., Connelly C. M. Some properties of the external activation site of the sodium pump in crab nerve. J Physiol. 1966 Jul;185(2):270–297. doi: 10.1113/jphysiol.1966.sp007987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Baker P. F., Hodgkin A. L., Ridgway E. B. Depolarization and calcium entry in squid giant axons. J Physiol. 1971 Nov;218(3):709–755. doi: 10.1113/jphysiol.1971.sp009641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bittar E. E., Chen S., Danielson B. G., Hartmann H. A., Tong E. Y. An investigation of sodium transport in barnacle muscle fibres by means of the microsyringe technique. J Physiol. 1972 Mar;221(2):389–414. doi: 10.1113/jphysiol.1972.sp009757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bittar E. E. The diffusion coefficient of sodium in barnacle muscle fibres. Experientia. 1973 May 15;29(5):553–553. doi: 10.1007/BF01926660. [DOI] [PubMed] [Google Scholar]
  9. Brading A. F. Sodium/sodium exchange in the smooth muscle of the guinea-pig taenia coli. J Physiol. 1975 Sep;251(1):79–105. doi: 10.1113/jphysiol.1975.sp011082. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Brinley F. J., Jr Sodium and potassium fluxes in isolated barnacle muscle fibers. J Gen Physiol. 1968 Apr;51(4):445–477. doi: 10.1085/jgp.51.4.445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Casteels R., van Breemen C., Wuytack F. Effect of metabolic depletion on the membrane permeability of smooth muscle cells and its modification by La 3+ . Nat New Biol. 1972 Oct 25;239(95):249–251. doi: 10.1038/newbio239249a0. [DOI] [PubMed] [Google Scholar]
  12. Chapman R. A., Ochi R. The effects of manganese ions on the contractile responses of isolated frog atrial trabeculae. J Physiol. 1972 Apr;222(1):56P–58P. [PubMed] [Google Scholar]
  13. De Mello W. C. Membrane sealing in frog skeletal-muscle fibers. Proc Natl Acad Sci U S A. 1973 Apr;70(4):982–984. doi: 10.1073/pnas.70.4.982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Dick D. A., Fry D. J. Location of inexchangeable sodium in the nucleus and cytoplasm of oocytes of Bufo bufo exposed to sodium-free solutions. J Physiol. 1973 May;231(1):19–29. doi: 10.1113/jphysiol.1973.sp010217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. FATT P., KATZ B. The electrical properties of crustacean muscle fibres. J Physiol. 1953 Apr 28;120(1-2):171–204. doi: 10.1113/jphysiol.1953.sp004884. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. HARRIS E. J. THE DEPENDENCE OF EFFLUX OF SODIUM FROM FROG MUSCLE ON INTERNAL SODIUM AND EXTERNAL POTASSIUM. J Physiol. 1965 Apr;177:355–376. doi: 10.1113/jphysiol.1965.sp007597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. HINKE J. A. Glass micro-electrodes for measuring intracellular activities of sodium and potassium. Nature. 1959 Oct 17;184(Suppl 16):1257–1258. doi: 10.1038/1841257a0. [DOI] [PubMed] [Google Scholar]
  18. HODGKIN A. L., KEYNES R. D. Experiments on the injection of substances into squid giant axons by means of a microsyringe. J Physiol. 1956 Mar 28;131(3):592–616. doi: 10.1113/jphysiol.1956.sp005485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. HODGKIN A. L., KEYNES R. D. The mobility and diffusion coefficient of potassium in giant axons from Sepia. J Physiol. 1953 Mar;119(4):513–528. doi: 10.1113/jphysiol.1953.sp004863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. HOROWICZ P., GERBER C. J. EFFECTS OF EXTERNAL POTASSIUM AND STROPHANTHIDIN ON SODIUM FLUXES IN FROG STRIATED MUSCLE. J Gen Physiol. 1965 Jan;48:489–514. doi: 10.1085/jgp.48.3.489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. KEYNES R. D., SWAN R. C. The effect of external sodium concentration on the sodium fluxes in frog skeletal muscle. J Physiol. 1959 Oct;147:591–625. doi: 10.1113/jphysiol.1959.sp006264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Keynes R. D., Steinhardt R. A. The components of the sodium efflux in frog muscle. J Physiol. 1968 Oct;198(3):581–599. doi: 10.1113/jphysiol.1968.sp008627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kushmerick M. J., Podolsky R. J. Ionic mobility in muscle cells. Science. 1969 Dec 5;166(3910):1297–1298. doi: 10.1126/science.166.3910.1297. [DOI] [PubMed] [Google Scholar]
  24. LEV A. A. DETERMINATION OF ACTIVITY AND ACTIVITY COEFFICIENTS OF POTASSIUM AND SODIUM IONS IN FROG MUSCLE FIBRES. Nature. 1964 Mar 14;201:1132–1134. doi: 10.1038/2011132a0. [DOI] [PubMed] [Google Scholar]
  25. MULLINS L. J., FRUMENTO A. S. The concentration dependence of sodium efflux from muscle. J Gen Physiol. 1963 Mar;46:629–654. doi: 10.1085/jgp.46.4.629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. McLaughlin S. G., Hinke J. A. Sodium and water binding in single striated muscle fibers of the giant barnacle. Can J Physiol Pharmacol. 1966 Sep;44(5):837–848. doi: 10.1139/y66-102. [DOI] [PubMed] [Google Scholar]
  27. Neild T. O., Thomas R. C. New design for a chloride-sensitive micro-electrode. J Physiol. 1973 May;231(1):7P–8P. [PubMed] [Google Scholar]
  28. Thomas R. C. Intracellular pH of snail neurones measured with a new pH-sensitive glass mirco-electrode. J Physiol. 1974 Apr;238(1):159–180. doi: 10.1113/jphysiol.1974.sp010516. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Thomas R. C. Intracellular sodium activity and the sodium pump in snail neurones. J Physiol. 1972 Jan;220(1):55–71. doi: 10.1113/jphysiol.1972.sp009694. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Thomas R. C. New design for sodium-sensitive glass micro-electrode. J Physiol. 1970 Sep;210(2):82P–83P. [PubMed] [Google Scholar]
  31. Vaughan-Jones R. D. Proceedings: The effect of low-sodium solution and lanthanum on the sodium activity of crab muscle fibres. J Physiol. 1976 Jan;254(1):40P–41P. [PubMed] [Google Scholar]
  32. Widdicombe J. H. Proceedings: The effect of lanthanum on ion content and movement in the guinea-pig's taenia coli. J Physiol. 1974 Sep;241(2):106P–107P. [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES