Abstract
1. The effects of the loss of normal activity can be studied in muscles held in a shortened position by immobilizing the ankle in a plaster cast. Since the innervation remains intact with this procedure, removal of the restraining case allows normal activity to be restored. The soleus and plantaris muscles grew as a function of time after the return of normal activity and these changes in tissue size are explained by changes in the average rates of protein synthesis and protein break-down as measured by sensitive in vitro techniques. Activity stimulates protein synthesis and inhibits protein break-down of the soleus muscle, thus enabling the tissue to accumulate protein. Blockage of de novo synthesis of RNA, but not DNA, severely restricted the normal, rapid enhancement of protein synthesis after thr return of activity. 2. The return of isotonic activity to the extensor digitorum longus muscle after immobilization in a lengthened position failed to fully compensate for the loss of the growth-promoting influence of stretch and the tissue gradually returned to the size of the control muscle. During the recovery process the higher rate of protein turnover and RNA concentrations of the immobilized muscle returned to the lower values of the control.
Full text
PDF













Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BULLER A. J., ECCLES J. C., ECCLES R. M. Differentiation of fast and slow muscles in the cat hind limb. J Physiol. 1960 Feb;150:399–416. doi: 10.1113/jphysiol.1960.sp006394. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Buller A. J. The neural control of the contractile mechanism in skeletal muscle. Endeavour. 1970 Sep;29(108):107–111. [PubMed] [Google Scholar]
- CRAWFORD G. N. An experimental study of muscle growth in the rabbit. J Bone Joint Surg Br. 1954 May;36-B(2):294–303. doi: 10.1302/0301-620X.36B2.294. [DOI] [PubMed] [Google Scholar]
- Close R. Effects of cross-union of motor nerves to fast and slow skeletal muscles. Nature. 1965 May 22;206(4986):831–832. doi: 10.1038/206831a0. [DOI] [PubMed] [Google Scholar]
- Drachman D. B., Witzke F. Trophic regulation of acetylcholine sensitivity of muscle: effect of electrical stimulation. Science. 1972 May 5;176(4034):514–516. doi: 10.1126/science.176.4034.514. [DOI] [PubMed] [Google Scholar]
- Dubowitz V., Newman D. L. Change in enzyme pattern after cross-innervation of fast and slow skeletal muscle. Nature. 1967 May 20;214(5090):840–841. doi: 10.1038/214840a0. [DOI] [PubMed] [Google Scholar]
- Fulks R. M., Li J. B., Goldberg A. L. Effects of insulin, glucose, and amino acids on protein turnover in rat diaphragm. J Biol Chem. 1975 Jan 10;250(1):290–298. [PubMed] [Google Scholar]
- Goldberg A. L., Jablecki C., Li J. B. Trophic functions of the neuron. 3. Mechanisms of neurotrophic interactions. Effects of use and disuse on amino acid transport and protein turnover in muscle. Ann N Y Acad Sci. 1974 Mar 22;228(0):190–201. doi: 10.1111/j.1749-6632.1974.tb20510.x. [DOI] [PubMed] [Google Scholar]
- Goldberg A. L. Protein turnover in skeletal muscle. II. Effects of denervation and cortisone on protein catabolism in skeletal muscle. J Biol Chem. 1969 Jun 25;244(12):3223–3229. [PubMed] [Google Scholar]
- Goldspink D. F., Goldberg A. L. Influence of pituitary growth hormone on DNA synthesis in rat tissues. Am J Physiol. 1975 Jan;228(1):302–309. doi: 10.1152/ajplegacy.1975.228.1.302. [DOI] [PubMed] [Google Scholar]
- Goldspink D. F., Goldberg A. L. Problems in the use of (Me- 3H) thymidine for the measurement of DNA synthesis. Biochim Biophys Acta. 1973 Apr 11;299(4):521–532. doi: 10.1016/0005-2787(73)90224-4. [DOI] [PubMed] [Google Scholar]
- Goldspink D. F. The effects of denervation on protein turnover of rat skeletal muscle. Biochem J. 1976 Apr 15;156(1):71–80. doi: 10.1042/bj1560071. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldspink D. F. The influence of immobilization and stretch on protein turnover of rat skeletal muscle. J Physiol. 1977 Jan;264(1):267–282. doi: 10.1113/jphysiol.1977.sp011667. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hamosch M., Lesch M., Baron J., Kaufman S. Enhanced protein synthesis in a cell-free system from hypertrophied skeletal muscle. Science. 1967 Aug 25;157(3791):935–937. doi: 10.1126/science.157.3791.935. [DOI] [PubMed] [Google Scholar]
- Jablecki C. K., Heuser J. E., Kaufman S. Autoradiographic localization of new RNA synthesis in hypertrophying skeletal muscle. J Cell Biol. 1973 Jun;57(3):743–759. doi: 10.1083/jcb.57.3.743. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kendrick-Jones J., Perry S. V. Protein synthesis and enzyme response to contractile activity in skeletal muscle. Nature. 1967 Jan 28;213(5074):406–408. doi: 10.1038/213406a0. [DOI] [PubMed] [Google Scholar]
- Lesch M., Parmley W. W., Hamosh M., Kaufman S., Sonnenblick E. H. Effects of acute hypertrophy on the contractile properties of skeletal muscle. Am J Physiol. 1968 Apr;214(4):685–690. doi: 10.1152/ajplegacy.1968.214.4.685. [DOI] [PubMed] [Google Scholar]
- PATTERSON M. S., GREENE R. C. MEASUREMENT OF LOW ENERGY BETA-EMITTERS IN AQUEOUS SOLUTION BY LIQUID SCINTILLATION COUNTING OF EMULSIONS. Anal Chem. 1965 Jun;37:854–857. doi: 10.1021/ac60226a017. [DOI] [PubMed] [Google Scholar]
- Peterson M. B., Lesch M. Protein synthesis and amino acid transport in the isolated rabbit right ventricular papillary muscle. Effect of isometric tension development. Circ Res. 1972 Sep;31(3):317–327. doi: 10.1161/01.res.31.3.317. [DOI] [PubMed] [Google Scholar]
- Sobel B. E., Kaufman S. Enhanced RNA polymerase activity in skeletal muscle undergoing hypertrophy. Arch Biochem Biophys. 1970 Apr;137(2):469–476. doi: 10.1016/0003-9861(70)90464-9. [DOI] [PubMed] [Google Scholar]
- Sola O. M., Christensen D. L., Martin A. W. Hypertrophy and hyperplasia of adult chicken anterior latissimus dorsi muscles following stretch with and without denervation. Exp Neurol. 1973 Oct;41(1):76–100. doi: 10.1016/0014-4886(73)90182-9. [DOI] [PubMed] [Google Scholar]
- Sréter F. A., Gergely J. The effect of cross reinnervation on the synthesis of myosin light chains. Biochem Biophys Res Commun. 1974 Jan;56(1):84–89. doi: 10.1016/s0006-291x(74)80318-9. [DOI] [PubMed] [Google Scholar]
- Tabary J. C., Tabary C., Tardieu C., Tardieu G., Goldspink G. Physiological and structural changes in the cat's soleus muscle due to immobilization at different lengths by plaster casts. J Physiol. 1972 Jul;224(1):231–244. doi: 10.1113/jphysiol.1972.sp009891. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Williams P. E., Goldspink G. Longitudinal growth of striated muscle fibres. J Cell Sci. 1971 Nov;9(3):751–767. doi: 10.1242/jcs.9.3.751. [DOI] [PubMed] [Google Scholar]
- Williams P. E., Goldspink G. The effect of denervation and dystrophy on the adaptation of sarcomere number to the functional length of the muscle in young and adult mice. J Anat. 1976 Nov;122(Pt 2):455–465. [PMC free article] [PubMed] [Google Scholar]
- Williams P. E., Goldspink G. The effect of immobilization on the longitudinal growth of striated muscle fibres. J Anat. 1973 Oct;116(Pt 1):45–55. [PMC free article] [PubMed] [Google Scholar]
