Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1977 Jan;264(2):471–487. doi: 10.1113/jphysiol.1977.sp011678

Kinetics of the inhibition of the Na-K pump by tetrapropylammonium chloride.

D L Kropp, J R Sachs
PMCID: PMC1307772  PMID: 839463

Abstract

1. The tetrapropylammonium ion (TPA) acts as a mixed-type (with K) inhibitor of the Na-K pump. The kinetics of the process suggest that combination of the pump with a single TPA ion is sufficient for inhibition. 2. TPA inhibits the partial reactions of the Na-K pump (the uncoupled Na outflux, the Na-Na exchange, and K-K exchange). 3. TPA inhibits ouabain binding to the pump and this inhibitory effect is enhanced by external Na. The inhibitory effect of TPA on the pump rate is also promoted by external Na. 4. A Lineweaver-Burk plot of the reciprocal of the ouabain-sensitive K influx versus the reciprocal of the external K concentration is approximately a straight line if the measurements are made in Na-free solutions. TPA increases the apparent Michaelis constant (K 1/2) for K and the plot remains straight. 5. The Lineweaver-Burk plot is parabolic when the measurements are made in solutions which contain Na. TPA both increases the apparent K 1/2 for K and makes the curve more parabolic. 6. The characteristics of pump inhibition by TPA are similar to those for strophanthidin. In both cases the kinetic behaviour is consistent with a model in which the inhibitor binds: with greatest affinity to the pump form free of K; with less affinity to the pump form with a single bound K; and with least affinity to the pump form with two bound K.

Full text

PDF
471

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BONTING S. L., HAWKINS N. M., CANADY M. R. STUDIES OF SODIUM-POTASSIUM ACTIVATED ADENOSINE TRIPHOSPHATASE. VII. INHIBITATION BY ERYTHROPHLEUM ALKALOIDS. Biochem Pharmacol. 1964 Jan;13:13–22. doi: 10.1016/0006-2952(64)90074-7. [DOI] [PubMed] [Google Scholar]
  2. Baker P. F., Manil J. The rates of action of K+ and ouabain on the sodium pump in squid axons. Biochim Biophys Acta. 1968 Mar 1;150(2):328–330. doi: 10.1016/0005-2736(68)90181-8. [DOI] [PubMed] [Google Scholar]
  3. Baker P. F., Willis J. S. Inhibition of the sodium pump in squid giant axons by cardiac glycosides: dependence on extracellular ions and metabolism. J Physiol. 1972 Jul;224(2):463–475. doi: 10.1113/jphysiol.1972.sp009905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baker P. F., Willis J. S. Potassium ions and the binding of cardiac glycosides to mammalian cells. Nature. 1970 May 9;226(5245):521–523. doi: 10.1038/226521a0. [DOI] [PubMed] [Google Scholar]
  5. Beauge L. A., Adragna N. The kinetics of ouabain inhibition and the partition of rubidium influx in human red blood cells. J Gen Physiol. 1971 May;57(5):576–592. doi: 10.1085/jgp.57.5.576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. GLYNN I. M. The action of cardiac glycosides on sodium and potassium movements in human red cells. J Physiol. 1957 Apr 3;136(1):148–173. doi: 10.1113/jphysiol.1957.sp005749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gardner J. D., Conlon T. P. The effects of sodium and potassium on ouabain binding by human erythrocytes. J Gen Physiol. 1972 Nov;60(5):609–629. doi: 10.1085/jgp.60.5.609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Garrahan P. J., Glynn I. M. The behaviour of the sodium pump in red cells in the absence of external potassium. J Physiol. 1967 Sep;192(1):159–174. doi: 10.1113/jphysiol.1967.sp008294. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Glynn I. M., Lew V. L., Lüthi U. Reversal of the potassium entry mechanism in red cells, with and without reversal of the entire pump cycle. J Physiol. 1970 Apr;207(2):371–391. doi: 10.1113/jphysiol.1970.sp009067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hoffman J. F. The red cell membrane and the transport of sodium and potassium. Am J Med. 1966 Nov;41(5):666–680. doi: 10.1016/0002-9343(66)90029-5. [DOI] [PubMed] [Google Scholar]
  11. KAHN J. B., Jr, ACHESON G. H. Effects of cardiac glyosides and other lactones, and of certain other compounds, on cation transfer in human erythrocytes. J Pharmacol Exp Ther. 1955 Nov;115(3):305–318. [PubMed] [Google Scholar]
  12. POST R. L., SEN A. K. AN ENZYMATIC MECHANISM OF ACTIVE SODIUM AND POTASSIUM TRANSPORT. J Histochem Cytochem. 1965 Feb;13:105–112. doi: 10.1177/13.2.105. [DOI] [PubMed] [Google Scholar]
  13. Ruoho A., Kyte J. Photoaffinity labeling of the ouabain-binding site on (Na+ plus K+) adenosinetriphosphatase. Proc Natl Acad Sci U S A. 1974 Jun;71(6):2352–2356. doi: 10.1073/pnas.71.6.2352. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. SCHATZMANN H. J. Herzglykoside als Hemmstoffe für den aktiven Kalium- und Natriumtransport durch die Erythrocytenmembran. Helv Physiol Pharmacol Acta. 1953;11(4):346–354. [PubMed] [Google Scholar]
  15. SCHATZMANN H. J. THE ROLE OF NA+ AND K+ IN THE OUABAIN-INHIBITION OF THE NA+ + K+-ACTIVATED MEMBRANE ADENOSINE TRIPHOSPHATASE. Biochim Biophys Acta. 1965 Jan 25;94:89–96. doi: 10.1016/0926-6585(65)90011-7. [DOI] [PubMed] [Google Scholar]
  16. Sachs J. R. Competitive effects of some cations on active potassium transport in the human red blood cell. J Clin Invest. 1967 Sep;46(9):1433–1441. doi: 10.1172/JCI105635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sachs J. R., Conrad M. E. Effect of tetraethylammonium on the active cation transport system of the red blood cell. Am J Physiol. 1968 Oct;215(4):795–798. doi: 10.1152/ajplegacy.1968.215.4.795. [DOI] [PubMed] [Google Scholar]
  18. Sachs J. R. Interaction of external K, Na, and cardioactive steroids with the Na-K pump of the human red blood cell. J Gen Physiol. 1974 Feb;63(2):123–143. doi: 10.1085/jgp.63.2.123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sachs J. R. Kinetics of the inhibition of the Na-K pump by external sodium. J Physiol. 1977 Jan;264(2):449–470. doi: 10.1113/jphysiol.1977.sp011677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sachs J. R., Welt L. G. The concentration dependence of active potassium transport in the human red blood cell. J Clin Invest. 1967 Jan;46(1):65–76. doi: 10.1172/JCI105512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Tobin T., Akera T., Brody S. L., Ku D., Brody T. M. Cassaine: mechanism of inhibition of Na+ +K+ -ATPase and relationship of this inhibition to cardiotonic actions. Eur J Pharmacol. 1975 Jun-Jul;32(02):133–145. doi: 10.1016/0014-2999(75)90276-9. [DOI] [PubMed] [Google Scholar]
  22. Wu S. C., Sjodin R. A. The interactions of potassium, sodium and strophanthidin during active transport of sodium ions in frog muscle cells. Biochim Biophys Acta. 1972 Dec 1;290(1):327–338. doi: 10.1016/0005-2736(72)90075-2. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES