Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1977 Feb;265(1):43–61. doi: 10.1113/jphysiol.1977.sp011704

Microcalorimetric determination of energy expenditure due to active sodium-potassium transport in the soleus muscle and brown adipose tissue of the rat.

A Chinet, T Clausen, L Girardier
PMCID: PMC1307807  PMID: 850182

Abstract

1. The resting heat production rate (E) of soleus muscles from young rats and brown adipose tissue from adult rats was measured by means of a perfusable heat flux microcalorimeter in the absence and presence of ouabain. In the soleus muscle, the acute response of E to ouabain was compared with the ouabain-suppressible components of 22Na-efflux and 42K-influx. 2. In standard Krebs-Ringer bicarbonate buffer, ouabain (10(-3)M) induced an immediate but transient decrease in E of around 5%. Both in muscle and adipose tissue this was followed by a progressive rise in heat production rate. 3. When the medium was enriched with Mg (10 mM), ouabain produced a sustained decrease in E of the same magnitude as in the standard medium and the secondary rise was less marked or abolished. Under these conditions, in the soleus muscle, ouabain inhibited E by 5% (i.e. by 1-76 +/- 0-22 mcal.g wet wt.-1.min-1), 22Na-efflux by 58% (0-187 +/- 0-013 micronmole. g wet wt.-1.min-1) and 42K-influx by 34% (0-132 +/- 0-028 micronmole. g wet wt.-1.min-1). 4. When the muscles were loaded with Na by pre-incubation in K-free Mg-enriched medium, the addition of K (3mM) induced an immediate ouabain-suppressible increase in E of 2-98 +/- 0-33 mcal. g wet wt.-1.min-1 and a concomitant stimulation of 22Na-efflux of 0-388 +/- 0-136 micronmole. g wet wt.-1.min-1. 5. Maximum Na/ATP ratios for the active Na-K transport process were computed, with no assumption as to the in vivo free energy of ATP hydrolysis. These were 2-1, 1-9 and 2-3 under the conditions described in paragraphs (2), (3) and (4) respectively. 6. The calculated reversible thermodynamic work associated with active Na-K transport corresponded to 34% of the measured ouabain-induced decrease in E. On the premise that the maximum efficiency of the cellular energy conservation processes is 65%, this estimate indicates that the minimum energetic efficiency of ATP utilization by the active Na-K transport process in mammalian muscle is 52%.

Full text

PDF
43

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BIRKS R. I. THE ROLE OF SODIUM IONS IN THE METABOLISM OF ACETYLCHOLINE. Can J Biochem Physiol. 1963 Dec;41:2573–2597. [PubMed] [Google Scholar]
  2. Bailey L. E., Sures H. A. The effect of ouabain on the washout and uptake of calcium in the isolated cat heart. J Pharmacol Exp Ther. 1971 Aug;178(2):259–270. [PubMed] [Google Scholar]
  3. Baker P. F., Crawford A. C. A note of the mechanism by which inhibitors of the sodium pump accelerate spontaneous release of transmitter from motor nerve terminals. J Physiol. 1975 May;247(1):209–226. doi: 10.1113/jphysiol.1975.sp010928. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baker P. F. Phosphorus metabolism of intact crab nerve and its relation to the active transport of ions. J Physiol. 1965 Sep;180(2):383–423. doi: 10.1113/jphysiol.1965.sp007709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Baker P. F. Transport and metabolism of calcium ions in nerve. Prog Biophys Mol Biol. 1972;24:177–223. doi: 10.1016/0079-6107(72)90007-7. [DOI] [PubMed] [Google Scholar]
  6. Barde Y. A., Chinet A., Girardier L. Potassium-induced increase in oxygen consumption of brown adipose tissue from the rat. J Physiol. 1975 Nov;252(2):523–536. doi: 10.1113/jphysiol.1975.sp011156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bourke R. S., Tower D. B. Fluid compartmentation and electrolytes of cat cerebral cortex in vitro. II. Sodium, potassium and chloride of mature cerebral cortex. J Neurochem. 1966 Nov;13(11):1099–1117. doi: 10.1111/j.1471-4159.1966.tb04268.x. [DOI] [PubMed] [Google Scholar]
  8. CHANCE B. THE ENERGY-LINKED REACTION OF CALCIUM WITH MITOCHONDRIA. J Biol Chem. 1965 Jun;240:2729–2748. [PubMed] [Google Scholar]
  9. CREESE R., SCHOLES N. W., WHALEN W. J. Resting potentials of diaphragm muscle after prolonged anoxia. J Physiol. 1958 Feb 17;140(2):301–317. doi: 10.1113/jphysiol.1958.sp005935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Casteels R., Wuytack F. Aerobic and anaerobic metabolism in smooth muscle cells of taenia coli in relation to active ion transport. J Physiol. 1975 Sep;250(2):203–220. doi: 10.1113/jphysiol.1975.sp011049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Clausen T., Kohn P. G. The effect of insulin on the transport of sodium and potassium in rat soleus muscle. J Physiol. 1977 Feb;265(1):19–42. doi: 10.1113/jphysiol.1977.sp011703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Clausen T. The relationship between the transport of glucose and cations across cell membranes in isolated tissues. II. Effects of K+-free medium, ouabain and insulin upon the fate of glucose in rat diaphragm. Biochim Biophys Acta. 1966 Jul 13;120(3):361–368. doi: 10.1016/0926-6585(66)90303-7. [DOI] [PubMed] [Google Scholar]
  13. Creese R. Sodium fluxes in diaphragm muscle and the effects of insulin and serum proteins. J Physiol. 1968 Jul;197(2):255–278. doi: 10.1113/jphysiol.1968.sp008558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Elmqvist D., Feldman D. S. Effects of sodium pump inhibitors on spontaneous acetylcholine release at the neuromuscular junction. J Physiol. 1965 Dec;181(3):498–505. doi: 10.1113/jphysiol.1965.sp007778. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Girardier L., Seydoux J., Clausen T. Membrane potential of brown adipose tissue. A suggested mechanism for the regulation of thermogenesis. J Gen Physiol. 1968 Dec;52(6):925–940. doi: 10.1085/jgp.52.6.925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. HILL A. V., HOWARTH J. V. The effect of potassium on the resting metabolism of the frog's sartorius. Proc R Soc Lond B Biol Sci. 1957 Aug 24;147(926):21–43. doi: 10.1098/rspb.1957.0034. [DOI] [PubMed] [Google Scholar]
  17. Herd P. A., Horwitz B. A., Smith R. E. Norepinephrine-sensitive Na+-K+ ATPase activity in brown adipose tissue. Experientia. 1970 Aug 15;26(8):825–826. doi: 10.1007/BF02114197. [DOI] [PubMed] [Google Scholar]
  18. Izmail-Beigi F., Edelman I. S. Mechanism of thyroid calorigenesis: role of active sodium transport. Proc Natl Acad Sci U S A. 1970 Oct;67(2):1071–1078. doi: 10.1073/pnas.67.2.1071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Klaus W., Lee K. S. Influence of cardiac glycosides on calcium binding in muscle subcellular components. J Pharmacol Exp Ther. 1969 Mar;166(1):68–76. [PubMed] [Google Scholar]
  20. Kohn P. G., Clausen T. The relationship between the transport of glucose and cations across cell membranes in isolated tissues. VI. The effect of insulin, ouabain, and metabolic inhibitors on the transport of 3-O-methylglucose and glucose in rat soleus muscles. Biochim Biophys Acta. 1971 Feb 2;225(2):277–290. doi: 10.1016/0005-2736(71)90221-5. [DOI] [PubMed] [Google Scholar]
  21. Langer G. A., Serena S. D. Effects of strophanthidin upon contraction and ionic exchange in rabbit ventricular myocardium: relation to control of active state. J Mol Cell Cardiol. 1970 Mar;1(1):65–90. doi: 10.1016/0022-2828(70)90029-5. [DOI] [PubMed] [Google Scholar]
  22. MULLER M., SIMON S. E. A comparison of ion shifts with respiration and glycolysis in muscle. Biochim Biophys Acta. 1960 Jan 1;37:107–119. doi: 10.1016/0006-3002(60)90084-6. [DOI] [PubMed] [Google Scholar]
  23. Nayler W. G. An effect of ouabain on the superficially-located stores of calcium in cardiac muscle cells. J Mol Cell Cardiol. 1973 Feb;5(1):101–110. doi: 10.1016/0022-2828(73)90039-4. [DOI] [PubMed] [Google Scholar]
  24. Nicholls D. G. The influence of respiration and ATP hydrolysis on the proton-electrochemical gradient across the inner membrane of rat-liver mitochondria as determined by ion distribution. Eur J Biochem. 1974 Dec 16;50(1):305–315. doi: 10.1111/j.1432-1033.1974.tb03899.x. [DOI] [PubMed] [Google Scholar]
  25. Novotný I., Vyskocil F. Possible role of Ca ions in the resting metabolism of frog sartorius muscle during potassium depolarization. J Cell Physiol. 1966 Feb;67(1):159–168. doi: 10.1002/jcp.1040670118. [DOI] [PubMed] [Google Scholar]
  26. Prusiner S., Poe M. Thermodynamic cosiderations of mammalian thermogenesis. Nature. 1968 Oct 19;220(5164):235–237. doi: 10.1038/220235a0. [DOI] [PubMed] [Google Scholar]
  27. Reuter H. Exchange of calcium ions in the mammalian myocardium. Mechanisms and physiological significance. Circ Res. 1974 May;34(5):599–605. doi: 10.1161/01.res.34.5.599. [DOI] [PubMed] [Google Scholar]
  28. Rosing J., Slater E. C. The value of G degrees for the hydrolysis of ATP. Biochim Biophys Acta. 1972 May 25;267(2):275–290. doi: 10.1016/0005-2728(72)90116-8. [DOI] [PubMed] [Google Scholar]
  29. Ruscák M., Whittam R. The metabolic response of brain slices to agents affecting the sodium pump. J Physiol. 1967 Jun;190(3):595–610. doi: 10.1113/jphysiol.1967.sp008230. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. SCHWARTZ A. The effect of ouabain on potassium content, phosphoprotein metabolism and oxygen consumption of guinea pig cerebral tissue. Biochem Pharmacol. 1962 Apr-May;11:389–391. doi: 10.1016/0006-2952(62)90061-8. [DOI] [PubMed] [Google Scholar]
  31. SHIGEL T., IMAI S., MURASE H. Contracture of slow muscle fibre induced by cardiac active steroids. Naunyn Schmiedebergs Arch Exp Pathol Pharmakol. 1963;244:510–518. doi: 10.1007/BF00246573. [DOI] [PubMed] [Google Scholar]
  32. Solandt D. Y. The effect of potassium on the excitability and resting metabolism of frog's muscle. J Physiol. 1936 Feb 8;86(2):162–170. doi: 10.1113/jphysiol.1936.sp003351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Swanson P. D., McIlwain H. Inhibition of the sodium-ion-stimulated adenosine triphosphatase after treatment of isolated guinea pig cerebral cortex with ouabain and other agents. J Neurochem. 1965 Sep-Oct;12(9):877–891. doi: 10.1111/j.1471-4159.1965.tb10274.x. [DOI] [PubMed] [Google Scholar]
  34. Thomas R. C. Electrogenic sodium pump in nerve and muscle cells. Physiol Rev. 1972 Jul;52(3):563–594. doi: 10.1152/physrev.1972.52.3.563. [DOI] [PubMed] [Google Scholar]
  35. Tower D. B. Ouabain and the distribution of calcium and magnesium in cerebral tissues in vitro. Exp Brain Res. 1968;6(4):273–283. doi: 10.1007/BF00233179. [DOI] [PubMed] [Google Scholar]
  36. WILKIE D. R. Thermodynamics and the interpretation of biological heat measurements. Prog Biophys Mol Biol. 1960;10:259–298. [PubMed] [Google Scholar]
  37. Whittam R., Ager M. E. The connexion between active cation transport and metabolism in erythrocytes. Biochem J. 1965 Oct;97(1):214–227. doi: 10.1042/bj0970214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Wilkie D. R. The efficiency of muscular contraction. J Mechanochem Cell Motil. 1974 Mar;2(4):257–267. [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES