Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1977 Feb;265(1):207–230. doi: 10.1113/jphysiol.1977.sp011713

The electrical properties and active ion transport across the urinary bladder of the urodele, Amphiuma means.

K J Degnan, J A Zadunaisky
PMCID: PMC1307816  PMID: 850164

Abstract

1. The electrical properties and the active transport processes of the isolated urinary bladder of the urodele, Amphiuma means, were studied by mounting this tissue as a flat sheet between two halves of a lucite chamber. The mean transepithelial potential difference was 70-2 +/- 2-3 mV (serosa positive), the mean short-circuit current was 10-9 +/- 0-5 micrionA/mg of dry weight and the mean transepithelial d.c. resistance was 6540 +/- 374 omega mg of dry weight. 2. The short-circuit current (Isc) accounted for 92% of the net 22Na+ flux from the mucosa to the serosa. The difference resulted from a transport of 36Cl- in the same direction as sodium. 3. The active sodium transport exhibited typical saturation kinetics, having a Km of 15-4 m-equiv/l. and approaching zero order at 60-70 m-equiv/l. The transepithelial potential difference increased linearly with the log of the mucosal sodium concentration at a rate of 50-3 mV per tenfold concentration change. 4. In the absence of the major anions (HCO3- and Cl-) from the bathing solutions, the electrical properties and the sodium influx decreased to less than 40% of their control values. The presence of only one of these two anions in the serosal bathing solution was sufficient to maintain these parameters. 5. Amiloride (10(-5)M) and ouabain (10(-6)M) inhibited the sodium transport 97% and 85% respectively. Amphotericin B (10(-6)M) stimulated the sodium transport 47%. Furosemide (10(-3)M) inhibited the chloride transport 43%. The sodium transport was insensitive to the action of two enurohypophyseal peptides tested, lysine-vasotocin and pitocin.

Full text

PDF
207

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aceves J., Erlij D., Edwards C. Na+ transport acrosss the isolated skin of Ambystoma mexicanus. Biochim Biophys Acta. 1968 Jun 11;150(4):744–746. doi: 10.1016/0005-2736(68)90068-0. [DOI] [PubMed] [Google Scholar]
  2. Andreoli T. E., Dennis V. W., Weigl A. M. The effect of amphotericin B on the water and nonelectrolyte permeability of thin lipid membranes. J Gen Physiol. 1969 Feb;53(2):133–156. doi: 10.1085/jgp.53.2.133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BENTLEY P. J. The effects of neurohypophysial extracts on the water transfer across the wall of the isolated urinary bladder of the toad Bufo marinus. J Endocrinol. 1958 Sep;17(3):201–209. doi: 10.1677/joe.0.0170201. [DOI] [PubMed] [Google Scholar]
  4. Bentley P. J. Neurohypophyseal hormones in amphibia: a comparison of their actions and storage. Gen Comp Endocrinol. 1969 Aug;13(1):39–44. doi: 10.1016/0016-6480(69)90219-6. [DOI] [PubMed] [Google Scholar]
  5. Bentley P. J. Osmoregulation in the aquatic urodeles Amphiuma means (the Congo eel) and Siren lacertina (the mud eel). Effects of vasotocin. Gen Comp Endocrinol. 1973 Apr;20(2):386–391. doi: 10.1016/0016-6480(73)90192-5. [DOI] [PubMed] [Google Scholar]
  6. Brodsky W. A., Schilb T. P. Ionic mechanisms for sodium and chloride transport across turtle bladders. Am J Physiol. 1966 May;210(5):987–996. doi: 10.1152/ajplegacy.1966.210.5.987. [DOI] [PubMed] [Google Scholar]
  7. Burg M., Stoner L., Cardinal J., Green N. Furosemide effect on isolated perfused tubules. Am J Physiol. 1973 Jul;225(1):119–124. doi: 10.1152/ajplegacy.1973.225.1.119. [DOI] [PubMed] [Google Scholar]
  8. CHOI J. K. The fine structure of the urinary bladder of the toad, Bufo marinus. J Cell Biol. 1963 Jan;16:53–72. doi: 10.1083/jcb.16.1.53. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. CRABBE J. Stimulation of active sodium transport across the isolated toad bladder after injection of aldosterone to the animal. Endocrinology. 1961 Oct;69:673–682. doi: 10.1210/endo-69-4-673. [DOI] [PubMed] [Google Scholar]
  10. Cuthbert A. W., Painter E., Prince W. T. The effects of anions on sodium transport. Br J Pharmacol. 1969 May;36(1):97–106. doi: 10.1111/j.1476-5381.1969.tb08307.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ferreira K. T. Anionic dependence of sodium transport in the frog skin. Biochim Biophys Acta. 1968 Jun 11;150(4):587–598. doi: 10.1016/0005-2736(68)90048-5. [DOI] [PubMed] [Google Scholar]
  12. Finn A. L., Handler J. S., Orloff J. Active chloride transport in the isolated toad bladder. Am J Physiol. 1967 Jul;213(1):179–184. doi: 10.1152/ajplegacy.1967.213.1.179. [DOI] [PubMed] [Google Scholar]
  13. Frazier L. W., Vanatta J. C. Mechanism of acidification of the mucosal fluid by the toad urinary bladder. Biochim Biophys Acta. 1972 Dec 1;290(1):168–177. doi: 10.1016/0005-2736(72)90061-2. [DOI] [PubMed] [Google Scholar]
  14. Gonzalez C. F., Shamoo Y. E., Brodsky W. A. Electrical nature of active chloride transport across short-circuited turtle bladders. Am J Physiol. 1967 Mar;212(3):641–650. doi: 10.1152/ajplegacy.1967.212.3.641. [DOI] [PubMed] [Google Scholar]
  15. Gonzalez C. F., Shamoo Y. E., Brodsky W. A. The accelerating effect of serosal HCO3- on Na+ transport in short-circuited turtle bladders. Biochim Biophys Acta. 1969;193(2):403–418. doi: 10.1016/0005-2736(69)90200-4. [DOI] [PubMed] [Google Scholar]
  16. Helman S. I., Miller D. A. In vitro techniques for avoiding edge damage in studies of frog skin. Science. 1971 Jul 9;173(3992):146–148. doi: 10.1126/science.173.3992.146. [DOI] [PubMed] [Google Scholar]
  17. Kristensen P. Chloride transport across isolated frog skin. Acta Physiol Scand. 1972 Mar;84(3):338–346. doi: 10.1111/j.1748-1716.1972.tb05185.x. [DOI] [PubMed] [Google Scholar]
  18. LEAF A., ANDERSON J., PAGE L. B. Active sodium transport by the isolated toad bladder. J Gen Physiol. 1958 Mar 20;41(4):657–668. doi: 10.1085/jgp.41.4.657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. MAFFLY R. H., HAYS R. M., LAMDIN E., LEAF A. The effect of neurohypophyseal hormones on the permeability of the toad bladder to urea. J Clin Invest. 1960 Apr;39:630–641. doi: 10.1172/JCI104078. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Martin D. W., Curran P. F. Reversed potentials in isolated frog skin. II. Active transport of chloride. J Cell Physiol. 1966 Jun;67(3):367–373. doi: 10.1002/jcp.1040670302. [DOI] [PubMed] [Google Scholar]
  21. PEACHEY L. D., RASMUSSEN H. Structure of the toad's urinary bladder as related to its physiology. J Biophys Biochem Cytol. 1961 Aug;10:529–553. doi: 10.1083/jcb.10.4.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Reuss L., Finn A. L. Passive electrical properties of toad urinary bladder epithelium. Intercellular electrical coupling and transepithelial cellular and shunt conductances. J Gen Physiol. 1974 Jul;64(1):1–25. doi: 10.1085/jgp.64.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. USSING H. H., ZERAHN K. Active transport of sodium as the source of electric current in the short-circuited isolated frog skin. Acta Physiol Scand. 1951 Aug 25;23(2-3):110–127. doi: 10.1111/j.1748-1716.1951.tb00800.x. [DOI] [PubMed] [Google Scholar]
  24. WHITTEMBURY G. ELECTRICAL POTENTIAL PROFILE OF THE TOAD SKIN EPITHELIUM. J Gen Physiol. 1964 Mar;47:795–808. doi: 10.1085/jgp.47.4.795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. ZADUNAISKY J. A., CANDIA O. A., CHIARANDINI D. J. THE ORIGIN OF THE SHORT-CIRCUIT CURRENT IN THE ISOLATED SKIN OF THE SOUTH AMERICAN FROG LEPTODACTYLUS OCELLATUS. J Gen Physiol. 1963 Nov;47:393–402. doi: 10.1085/jgp.47.2.393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Zadunaisky J. A. Active transport of chloride in frog cornea. Am J Physiol. 1966 Aug;211(2):506–512. doi: 10.1152/ajplegacy.1966.211.2.506. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES