Abstract
1. Absorption of glucose and water was studied in isolated perfused rat small intestine with arterial infusion under normal conditions and with a 'downhill' sodium gradient across the mucosa. 2. The effects of metabolic inhibitors, iodoacetate phenformin and dinitrophenol, on absorption were determined in the presence of normal and 'downhill' sodium gradients. 3. Glucose absorption was inhibited by each inhibitor, and the inhibition was independent of the direction of the sodium gradient. 4. Net sodium flux across the mucosa was also inhibited under 'downhill' sodium gradient conditions. 5. The simultaneous and parallel inhibition of both glucose and sodium transport is consistent with, but does not prove, the sodium gradient theory.
Full text
PDF
















Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BARRY R. J., DIKSTEIN S., MATTHEWS J., SMYTH D. H., WRIGHT E. M. ELECTRICAL POTENTIALS ASSOCIATED WITH INTESTINAL SUGAR TRANSFER. J Physiol. 1964 Jun;171:316–338. doi: 10.1113/jphysiol.1964.sp007379. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baker P. F., Willis J. S. Potassium ions and the binding of cardiac glycosides to mammalian cells. Nature. 1970 May 9;226(5245):521–523. doi: 10.1038/226521a0. [DOI] [PubMed] [Google Scholar]
- Bronk J. R., Leese H. J. Accumulation of amino acids and glucose by the mammalian small intestine. Symp Soc Exp Biol. 1974;(28):283–304. [PubMed] [Google Scholar]
- CHAPPELL J. B. The effect of alkylguanidines on mitochondrial metabolism. J Biol Chem. 1963 Jan;238:410–417. [PubMed] [Google Scholar]
- CRANE R. K. Hypothesis for mechanism of intestinal active transport of sugars. Fed Proc. 1962 Nov-Dec;21:891–895. [PubMed] [Google Scholar]
- Chez R. A., Palmer R. R., Schultz S. G., Curran P. F. Effect of inhibitors on alanine transport in isolated rabbit ileum. J Gen Physiol. 1967 Nov;50(10):2357–2375. doi: 10.1085/jgp.50.10.2357. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crane R. K. Na+ -dependent transport in the intestine and other animal tissues. Fed Proc. 1965 Sep-Oct;24(5):1000–1006. [PubMed] [Google Scholar]
- Eddy A. A., Mulcahy M. F., Thomson P. J. The effects of sodium ions and potassium ions on glycine uptake by mouse ascites-tumour cells in the presence and absence of selected metabolic inhibitors. Biochem J. 1967 Jun;103(3):863–876. doi: 10.1042/bj1030863. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eddy A. A. The effects of varying the cellular and extracellular concentrations of sodium and potassium ions on the uptake of glycine by mouse ascites-tumour cells in the presence and absence of sodium cyanide. Biochem J. 1968 Jul;108(3):489–498. doi: 10.1042/bj1080489. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fisher R. B., Gardner M. L. A kinetic approach to the study of absorption of solutes by isolated perfused small intestine. J Physiol. 1974 Aug;241(1):211–234. doi: 10.1113/jphysiol.1974.sp010650. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fisher R. B., Gardner M. L. Dependence of intestinal glucose absorption on sodium, studied with a new arterial infusion technique. J Physiol. 1974 Aug;241(1):235–260. doi: 10.1113/jphysiol.1974.sp010651. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gardner M. L. Inhibition of iodoacetate of 'downhill' transport of sodium ions across isolated rat small intestine. Biochem Soc Trans. 1975;3(2):255–256. doi: 10.1042/bst0030255. [DOI] [PubMed] [Google Scholar]
- Hopfer U., Nelson K., Perrotto J., Isselbacher K. J. Glucose transport in isolated brush border membrane from rat small intestine. J Biol Chem. 1973 Jan 10;248(1):25–32. [PubMed] [Google Scholar]
- Leese H. J., Bronk J. R. Glucose accumulation by rat small-intestinal mucosa after depletion of intracellular adenosine triphosphate. Biochem J. 1972 Jun;128(2):455–457. doi: 10.1042/bj1280455. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murer H., Hopfer U. Demonstration of electrogenic Na+-dependent D-glucose transport in intestinal brush border membranes. Proc Natl Acad Sci U S A. 1974 Feb;71(2):484–488. doi: 10.1073/pnas.71.2.484. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Potashner S. J., Johnstone R. M. Cation gradients, ATP and amino acid accumulation in Ehrlich ascites cells. Biochim Biophys Acta. 1971 Mar 9;233(1):91–103. doi: 10.1016/0005-2736(71)90361-0. [DOI] [PubMed] [Google Scholar]
- Potashner S., Johnston R. M. Cations, transport and exchange diffusion of methionine in Ehrlich ascites cells. Biochim Biophys Acta. 1970 Jun 2;203(3):445–456. doi: 10.1016/0005-2736(70)90184-7. [DOI] [PubMed] [Google Scholar]
- RIGGS T. R., WALKER L. M., CHRISTENSEN H. N. Potassium migration and amino acid transport. J Biol Chem. 1958 Dec;233(6):1479–1484. [PubMed] [Google Scholar]
- Reid M., Eddy A. A. Apparent metabolic regulation of the coupling between the potassium ion gradient and methionine transport in mouse ascites-tumour cells. Biochem J. 1971 Oct;124(5):951–952. doi: 10.1042/bj1240951. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SCHULTZ S. G., ZALUSKY R. ION TRANSPORT IN ISOLATED RABBIT ILEUM. I. SHORT-CIRCUIT CURRENT AND NA FLUXES. J Gen Physiol. 1964 Jan;47:567–584. doi: 10.1085/jgp.47.3.567. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schultz S. G., Curran P. F. Coupled transport of sodium and organic solutes. Physiol Rev. 1970 Oct;50(4):637–718. doi: 10.1152/physrev.1970.50.4.637. [DOI] [PubMed] [Google Scholar]
- Schultz S. G., Fuisz R. E., Curran P. F. Amino acid and sugar transport in rabbit ileum. J Gen Physiol. 1966 May;49(5):849–866. doi: 10.1085/jgp.49.5.849. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schäfer G. Site-specific uncoupling and inhibition of oxidative phosphorylation by biguanides. II. Biochim Biophys Acta. 1969 Feb 25;172(2):334–337. doi: 10.1016/0005-2728(69)90077-2. [DOI] [PubMed] [Google Scholar]
- VIDAVER G. A. SOME TESTS OF THE HYPOTHESIS THAT THE SODIUM-ION GRADIENT FURNISHES THE ENERGY FOR GLYCINE-ACTIVE TRANSPORT BY PIGEON RED CELLS. Biochemistry. 1964 Jun;3:803–808. doi: 10.1021/bi00894a013. [DOI] [PubMed] [Google Scholar]
