Skip to main content
Public Health Reports logoLink to Public Health Reports
. 1998 Sep-Oct;113(5):388–397.

The brain and child development: time for some critical thinking.

J T Bruer 1
PMCID: PMC1308409  PMID: 9769763

Abstract

There is widespread interest in the claim that new breakthroughs in neuroscience have radical implications for early child care policy. Yet despite parents', educators', and policy makers' enthusiasm, there are good reasons to be skeptical. The neuroscience cited in the policy arguments is not new, depending primarily on three well-established neurobiological findings: rapid postnatal synapse formation, critical periods in development, and the effects of enriched rearing on brain connectivity in rats. Furthermore, this neuroscience is often oversimplified and misinterpreted. While child care advocates are enthusiastic about potential applications of brain science, for the most part neuroscientists are more cautious and skeptical. After reviewing the evidence and the arguments, the author suggests that in the interest of good science and sound policy, more of us might adopt a skeptical stance.

Full text

PDF
388

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cragg B. G. The development of synapses in the visual system of the cat. J Comp Neurol. 1975 Mar 15;160(2):147–166. doi: 10.1002/cne.901600202. [DOI] [PubMed] [Google Scholar]
  2. Green E. J., Greenough W. T., Schlumpf B. E. Effects of complex or isolated environments on cortical dendrites of middle-aged rats. Brain Res. 1983 Apr 4;264(2):233–240. doi: 10.1016/0006-8993(83)90821-1. [DOI] [PubMed] [Google Scholar]
  3. Greenough W. T., Black J. E., Wallace C. S. Experience and brain development. Child Dev. 1987 Jun;58(3):539–559. [PubMed] [Google Scholar]
  4. Hubel D. H., Wiesel T. N. Ferrier lecture. Functional architecture of macaque monkey visual cortex. Proc R Soc Lond B Biol Sci. 1977 Jul 28;198(1130):1–59. doi: 10.1098/rspb.1977.0085. [DOI] [PubMed] [Google Scholar]
  5. Hubel D. H., Wiesel T. N., LeVay S. Plasticity of ocular dominance columns in monkey striate cortex. Philos Trans R Soc Lond B Biol Sci. 1977 Apr 26;278(961):377–409. doi: 10.1098/rstb.1977.0050. [DOI] [PubMed] [Google Scholar]
  6. Huttenlocher P. R., Dabholkar A. S. Regional differences in synaptogenesis in human cerebral cortex. J Comp Neurol. 1997 Oct 20;387(2):167–178. doi: 10.1002/(sici)1096-9861(19971020)387:2<167::aid-cne1>3.0.co;2-z. [DOI] [PubMed] [Google Scholar]
  7. Huttenlocher P. R., de Courten C., Garey L. J., Van der Loos H. Synaptogenesis in human visual cortex--evidence for synapse elimination during normal development. Neurosci Lett. 1982 Dec 13;33(3):247–252. doi: 10.1016/0304-3940(82)90379-2. [DOI] [PubMed] [Google Scholar]
  8. Lund J. S., Boothe R. G., Lund R. D. Development of neurons in the visual cortex (area 17) of the monkey (Macaca nemestrina): a Golgi study from fetal day 127 to postnatal maturity. J Comp Neurol. 1977 Nov 15;176(2):149–188. doi: 10.1002/cne.901760203. [DOI] [PubMed] [Google Scholar]
  9. Merzenich M. M., Kaas J. H., Wall J., Nelson R. J., Sur M., Felleman D. Topographic reorganization of somatosensory cortical areas 3b and 1 in adult monkeys following restricted deafferentation. Neuroscience. 1983 Jan;8(1):33–55. doi: 10.1016/0306-4522(83)90024-6. [DOI] [PubMed] [Google Scholar]
  10. Rakic P., Bourgeois J. P., Goldman-Rakic P. S. Synaptic development of the cerebral cortex: implications for learning, memory, and mental illness. Prog Brain Res. 1994;102:227–243. doi: 10.1016/S0079-6123(08)60543-9. [DOI] [PubMed] [Google Scholar]
  11. Turner A. M., Greenough W. T. Differential rearing effects on rat visual cortex synapses. I. Synaptic and neuronal density and synapses per neuron. Brain Res. 1985 Mar 11;329(1-2):195–203. doi: 10.1016/0006-8993(85)90525-6. [DOI] [PubMed] [Google Scholar]

Articles from Public Health Reports are provided here courtesy of SAGE Publications

RESOURCES