Full Text
The Full Text of this article is available as a PDF (181.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akasaka T., Tanaka M., Yamaguchi A., Sato K. Type II topoisomerase mutations in fluoroquinolone-resistant clinical strains of Pseudomonas aeruginosa isolated in 1998 and 1999: role of target enzyme in mechanism of fluoroquinolone resistance. Antimicrob Agents Chemother. 2001 Aug;45(8):2263–2268. doi: 10.1128/AAC.45.8.2263-2268.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brinkman F. S., Bains M., Hancock R. E. The amino terminus of Pseudomonas aeruginosa outer membrane protein OprF forms channels in lipid bilayer membranes: correlation with a three-dimensional model. J Bacteriol. 2000 Sep;182(18):5251–5255. doi: 10.1128/jb.182.18.5251-5255.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chaïbi E. B., Sirot D., Paul G., Labia R. Inhibitor-resistant TEM beta-lactamases: phenotypic, genetic and biochemical characteristics. J Antimicrob Chemother. 1999 Apr;43(4):447–458. doi: 10.1093/jac/43.4.447. [DOI] [PubMed] [Google Scholar]
- Ciofu O., Fussing V., Bagge N., Koch C., Høiby N. Characterization of paired mucoid/non-mucoid Pseudomonas aeruginosa isolates from Danish cystic fibrosis patients: antibiotic resistance, beta-lactamase activity and RiboPrinting. J Antimicrob Chemother. 2001 Sep;48(3):391–396. doi: 10.1093/jac/48.3.391. [DOI] [PubMed] [Google Scholar]
- Gilleland L. B., Gilleland H. E., Gibson J. A., Champlin F. R. Adaptive resistance to aminoglycoside antibiotics in Pseudomonas aeruginosa. J Med Microbiol. 1989 May;29(1):41–50. doi: 10.1099/00222615-29-1-41. [DOI] [PubMed] [Google Scholar]
- Giwercman B., Lambert P. A., Rosdahl V. T., Shand G. H., Høiby N. Rapid emergence of resistance in Pseudomonas aeruginosa in cystic fibrosis patients due to in-vivo selection of stable partially derepressed beta-lactamase producing strains. J Antimicrob Chemother. 1990 Aug;26(2):247–259. doi: 10.1093/jac/26.2.247. [DOI] [PubMed] [Google Scholar]
- Giwercman B., Meyer C., Lambert P. A., Reinert C., Høiby N. High-level beta-lactamase activity in sputum samples from cystic fibrosis patients during antipseudomonal treatment. Antimicrob Agents Chemother. 1992 Jan;36(1):71–76. doi: 10.1128/aac.36.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hancock R. E. Resistance mechanisms in Pseudomonas aeruginosa and other nonfermentative gram-negative bacteria. Clin Infect Dis. 1998 Aug;27 (Suppl 1):S93–S99. doi: 10.1086/514909. [DOI] [PubMed] [Google Scholar]
- Henwood C. J., Livermore D. M., James D., Warner M., Pseudomonas Study Group Antimicrobial susceptibility of Pseudomonas aeruginosa: results of a UK survey and evaluation of the British Society for Antimicrobial Chemotherapy disc susceptibility test. J Antimicrob Chemother. 2001 Jun;47(6):789–799. doi: 10.1093/jac/47.6.789. [DOI] [PubMed] [Google Scholar]
- Livermore D. M. Of Pseudomonas, porins, pumps and carbapenems. J Antimicrob Chemother. 2001 Mar;47(3):247–250. doi: 10.1093/jac/47.3.247. [DOI] [PubMed] [Google Scholar]
- MacLeod D. L., Nelson L. E., Shawar R. M., Lin B. B., Lockwood L. G., Dirk J. E., Miller G. H., Burns J. L., Garber R. L. Aminoglycoside-resistance mechanisms for cystic fibrosis Pseudomonas aeruginosa isolates are unchanged by long-term, intermittent, inhaled tobramycin treatment. J Infect Dis. 2000 Mar;181(3):1180–1184. doi: 10.1086/315312. [DOI] [PubMed] [Google Scholar]
- Mah T. F., O'Toole G. A. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol. 2001 Jan;9(1):34–39. doi: 10.1016/s0966-842x(00)01913-2. [DOI] [PubMed] [Google Scholar]
- Maiti S. N., Phillips O. A., Micetich R. G., Livermore D. M. Beta-lactamase inhibitors: agents to overcome bacterial resistance. Curr Med Chem. 1998 Dec;5(6):441–456. [PubMed] [Google Scholar]
- Nichols W. W., Dorrington S. M., Slack M. P., Walmsley H. L. Inhibition of tobramycin diffusion by binding to alginate. Antimicrob Agents Chemother. 1988 Apr;32(4):518–523. doi: 10.1128/aac.32.4.518. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nikaido H. Multiple antibiotic resistance and efflux. Curr Opin Microbiol. 1998 Oct;1(5):516–523. doi: 10.1016/s1369-5274(98)80083-0. [DOI] [PubMed] [Google Scholar]
- Poole K. Multidrug efflux pumps and antimicrobial resistance in Pseudomonas aeruginosa and related organisms. J Mol Microbiol Biotechnol. 2001 Apr;3(2):255–264. [PubMed] [Google Scholar]
- Riedel K., Hentzer M., Geisenberger O., Huber B., Steidle A., Wu H., Høiby N., Givskov M., Molin S., Eberl L. N-acylhomoserine-lactone-mediated communication between Pseudomonas aeruginosa and Burkholderia cepacia in mixed biofilms. Microbiology. 2001 Dec;147(Pt 12):3249–3262. doi: 10.1099/00221287-147-12-3249. [DOI] [PubMed] [Google Scholar]
- Srikumar R., Tsang E., Poole K. Contribution of the MexAB-OprM multidrug efflux system to the beta-lactam resistance of penicillin-binding protein and beta-lactamase-derepressed mutants of Pseudomonas aeruginosa. J Antimicrob Chemother. 1999 Oct;44(4):537–540. doi: 10.1093/jac/44.4.537. [DOI] [PubMed] [Google Scholar]
- Stewart P. S., Costerton J. W. Antibiotic resistance of bacteria in biofilms. Lancet. 2001 Jul 14;358(9276):135–138. doi: 10.1016/s0140-6736(01)05321-1. [DOI] [PubMed] [Google Scholar]
- Vahaboglu H., Coskunkan F., Tansel O., Ozturk R., Sahin N., Koksal I., Kocazeybek B., Tatman-Otkun M., Leblebicioglu H., Ozinel M. A. Clinical importance of extended-spectrum beta-lactamase (PER-1-type)-producing Acinetobacter spp. and Pseudomonas aeruginosa strains. J Med Microbiol. 2001 Jul;50(7):642–645. doi: 10.1099/0022-1317-50-7-642. [DOI] [PubMed] [Google Scholar]
- Woodford N., Palepou M. F., Babini G. S., Bates J., Livermore D. M. Carbapenemase-producing Pseudomonas aeruginosa in UK. Lancet. 1998 Aug 15;352(9127):546–547. doi: 10.1016/s0140-6736(05)79255-2. [DOI] [PubMed] [Google Scholar]
- Ziha-Zarifi I., Llanes C., Köhler T., Pechere J. C., Plesiat P. In vivo emergence of multidrug-resistant mutants of Pseudomonas aeruginosa overexpressing the active efflux system MexA-MexB-OprM. Antimicrob Agents Chemother. 1999 Feb;43(2):287–291. doi: 10.1128/aac.43.2.287. [DOI] [PMC free article] [PubMed] [Google Scholar]