Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1976 Jun;258(1):205–225. doi: 10.1113/jphysiol.1976.sp011415

On the elementary conductance event produced by L-glutamate and quanta of the natural transmitter at the neuromuscular junctions of Maia squinado.

A C Crawford, R N McBurney
PMCID: PMC1308968  PMID: 181565

Abstract

1. The membrane potential of giant muscle fibres of Maia squinado was measured with an intracellular wire electrode. On applying L-glutamate to the fibre the cell deplorized and fluctuations of the membrane potential around its mean level--glutamate noise--were seen. 2. The variance of the glutamate voltage noise is proportional to the mean level of depolarization. The noise can be regarded as being caused by numerous exponentially decaying elementary voltage events about 5 X 10(-10) V in amplitude. The miniature excitatory junctional potential (min.e.j.p.) is approximately 6000 times the amplitude of the elementary voltage event produced by L-glutamate. 3. The power spectrum of glutamate voltage noise is a Lorentzian with a half-power frequency of approximately 20 Hz. 4. Min. e.j.p.s. decay exponentially with a time constant that coincides with the average lifetime of the elementary glutamate voltage event. 5. When glutamate is applied locally to a spot where extracellular min. e.j.p.s. can be recorded with a focal glass pipette, extracellular glutamate noise is seen. Glutamate noise could not be detected from elsewhere on the fibre. 6. The variance of the extracellular noise is proportional to the mean extracellular potential, and its power spectrum is a Lorentzian with a half-power frequency of about 110 Hz. 7. The extracellular min. e.j.p.s decay exponentially with a time constant that coincides with average lifetime of the elementary glutamate current event. 8. It is suggested that the decay of the quantal currents flowing at the excitatory junction is limited by the closure of the conductance channels in the post-synaptic membrane and not by the relaxation of the transmitter concentration in the synaptic cleft.

Full text

PDF
205

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson C. R., Stevens C. F. Voltage clamp analysis of acetylcholine produced end-plate current fluctuations at frog neuromuscular junction. J Physiol. 1973 Dec;235(3):655–691. doi: 10.1113/jphysiol.1973.sp010410. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baker P. F., Potashner S. J. The role of metabolic energy in the transport of glutamate by invertebrate nerve. Biochim Biophys Acta. 1973 Aug 9;318(1):123–139. doi: 10.1016/0005-2736(73)90342-8. [DOI] [PubMed] [Google Scholar]
  3. CALDWELL P. C., WALSTER G. STUDIES ON THE MICRO-INJECTION OF VARIOUS SUBSTANCES INTO CRAB MUSCLE FIBRES. J Physiol. 1963 Nov;169:353–372. doi: 10.1113/jphysiol.1963.sp007261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cooke J. D., Quastel D. M. Transmitter release by mammalian motor nerve terminals in response to focal polarization. J Physiol. 1973 Jan;228(2):377–405. doi: 10.1113/jphysiol.1973.sp010092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Crawford A. C., McBurney R. N. The post-synaptic action of some putative excitatory transmitter substances. Proc R Soc Lond B Biol Sci. 1976 Mar 16;192(1109):481–489. doi: 10.1098/rspb.1976.0026. [DOI] [PubMed] [Google Scholar]
  6. Curtis D. R., Johnston G. A. Amino acid transmitters in the mammalian central nervous system. Ergeb Physiol. 1974;69(0):97–188. doi: 10.1007/3-540-06498-2_3. [DOI] [PubMed] [Google Scholar]
  7. Evans P. D. The free amino acid pool of the haemocytes of Carcinus maenas (L.). J Exp Biol. 1972 Apr;56(2):501–507. doi: 10.1242/jeb.56.2.501. [DOI] [PubMed] [Google Scholar]
  8. FATT P., KATZ B. Spontaneous subthreshold activity at motor nerve endings. J Physiol. 1952 May;117(1):109–128. [PMC free article] [PubMed] [Google Scholar]
  9. FATT P., KATZ B. The electrical properties of crustacean muscle fibres. J Physiol. 1953 Apr 28;120(1-2):171–204. doi: 10.1113/jphysiol.1953.sp004884. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gage P. W., McBurney R. N. An analysis of the relationship between the current and potential generated by a quantum of acetylcholine in muscle fibers without transverse tubules. J Membr Biol. 1973;12(3):247–272. doi: 10.1007/BF01870004. [DOI] [PubMed] [Google Scholar]
  11. Gage P. W., McBurney R. N. Effects of membrane potential, temperature and neostigmine on the conductance change caused by a quantum or acetylcholine at the toad neuromuscular junction. J Physiol. 1975 Jan;244(2):385–407. doi: 10.1113/jphysiol.1975.sp010805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Katz B., Miledi R. The binding of acetylcholine to receptors and its removal from the synaptic cleft. J Physiol. 1973 Jun;231(3):549–574. doi: 10.1113/jphysiol.1973.sp010248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Katz B., Miledi R. The statistical nature of the acetycholine potential and its molecular components. J Physiol. 1972 Aug;224(3):665–699. doi: 10.1113/jphysiol.1972.sp009918. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. LEWIS P. R. The free amino-acids of invertebrate nerve. Biochem J. 1952 Oct;52(2):330–338. doi: 10.1042/bj0520330. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Richards C. D. Chloride fluxes in crab muscle fibres. J Physiol. 1969 May;202(1):211–221. doi: 10.1113/jphysiol.1969.sp008805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Takeuchi A., Onodera K. Reversal potentials of the excitatory transmitter and L-glutamate at the crayfish neuromuscular junction. Nat New Biol. 1973 Mar 28;242(117):124–126. doi: 10.1038/newbio242124a0. [DOI] [PubMed] [Google Scholar]
  17. Takeuchi A., Takeuchi N. Anion permeability of the inhibitory post-synaptic membrane of the crayfish neuromuscular junction. J Physiol. 1967 Aug;191(3):575–590. doi: 10.1113/jphysiol.1967.sp008269. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES