Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1976 Jun;258(2):433–452. doi: 10.1113/jphysiol.1976.sp011429

Identification, classification and anatomical segregation of cells with X-like and Y-like properties in the lateral geniculate nucleus of old-world primates.

B Dreher, Y Fukada, R W Rodieck
PMCID: PMC1308985  PMID: 822151

Abstract

1. All the cells (158) that we studied in the lateral geniculate nuclei of Macaca nemestrina and Macaca irus could be distinguished as either X-like or Y-like on the basis of their responses to tests developed to classify cat retinal and lateral geniculate nucleus cells. These tests include responses to stationary spots, fast moving wands and moving gratings. 2. Response latencies to electrical stimulation of the optic chiasm were determined for 130 cells; no X-like cell showed a latency shorter than 1-7 ms, no Y-like cell showed a latency longer than 1-6 ms. Primate lateral geniculate nucleus cells with X-like properties thus receive their excitatory input from retinal cells with slowly conducting axons and these most probably include the tonic ganglion cells described by Gouras (1968, 1969); Y-like lateral geniculate nucleus cells are driven by retinal cells with faster conducting axons, most probably including the phasic ganglion cells described by Gouras. 3. Wiesel & Hubel (1966) classified monkey lateral geniculate nucleus cells into four main types based on their receptive-field properties, as revealed by spectrally and spatially distinct stimuli. We find that all Type I and Type II cells show X-like properties; all type IV cells show Y-like properties. Type III consists of a subtype that show X-like properties, here termed Type IIIx, and a subtype that show Y-like properties, here termed Type IIIy. 4. The first cells encountered as the micro-electrode reached the lateral geniculate nucleus were always X-like. In some penetrations only X-like cells were encountered as the electrode moved downward through the lateral geniculate nucleus. In the remaining penetrations, after recording X-like cells through most of the lateral geniculate nucleus, Y-like cells were then encountered. No X-like cells were found below Y-like cells. thus these two classes of cells are anatomically segregated within the primate lateral geniculate nucleus. Electrode marking showed the borger between X-like and Y-like cells to correspond to the border between the paro- and magnocellular layers of the lateral geniculate nucleus. Thus X-like cells (i.e. Types I, II and IIIx) occur in the parvocellular layers, Y-like cells (i.e. Types IIIy and IV)in the magnocellular layers.

Full text

PDF
433

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BREMER F., STOUPEL N. Facilitation et inhibition des potentiels évoqués corticaux dans l'éveil cérébral. Arch Int Physiol Biochim. 1959 Apr;67(2):240–275. doi: 10.3109/13813455909074432. [DOI] [PubMed] [Google Scholar]
  2. Bartlett J. R., Doty R. W., Sr Response of units in striate cortex of squirrel monkeys to visual and electrical stimuli. J Neurophysiol. 1974 Jul;37(4):621–641. doi: 10.1152/jn.1974.37.4.621. [DOI] [PubMed] [Google Scholar]
  3. Cleland B. G., Dubin M. W., Levick W. R. Sustained and transient neurones in the cat's retina and lateral geniculate nucleus. J Physiol. 1971 Sep;217(2):473–496. doi: 10.1113/jphysiol.1971.sp009581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. De Monasterio F. M., Gouras P. Functional properties of ganglion cells of the rhesus monkey retina. J Physiol. 1975 Sep;251(1):167–195. doi: 10.1113/jphysiol.1975.sp011086. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. De Monasterio F. M., Gouras P., Tolhurst D. J. Concealed colour opponency in ganglion cells of the rhesus monkey retina. J Physiol. 1975 Sep;251(1):217–229. doi: 10.1113/jphysiol.1975.sp011088. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. De Valois R. L. Processing of intensity and wavelength information by the visual system. Invest Ophthalmol. 1972 Jun;11(6):417–427. [PubMed] [Google Scholar]
  7. Doty R. W., Wilson P. D., Bartlett J. R., Pecci-Saavedra J. Mesencephalic control of lateral geniculate nucleus in primates. I. Electrophysiology. Exp Brain Res. 1973 Sep 29;18(2):189–203. doi: 10.1007/BF00234723. [DOI] [PubMed] [Google Scholar]
  8. Enroth-Cugell C., Robson J. G. The contrast sensitivity of retinal ganglion cells of the cat. J Physiol. 1966 Dec;187(3):517–552. doi: 10.1113/jphysiol.1966.sp008107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fukada Y. Receptive field organization of cat optic nerve fibers with special reference to conduction velocity. Vision Res. 1971 Mar;11(3):209–226. doi: 10.1016/0042-6989(71)90186-6. [DOI] [PubMed] [Google Scholar]
  10. Gouras P. Antidromic responses of orthodromically identified ganglion cells in monkey retina. J Physiol. 1969 Oct;204(2):407–419. doi: 10.1113/jphysiol.1969.sp008920. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gouras P. Identification of cone mechanisms in monkey ganglion cells. J Physiol. 1968 Dec;199(3):533–547. doi: 10.1113/jphysiol.1968.sp008667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hoffman K. P., Stone J. Conduction velocity of afferents to cat visual cortex: a correlation with cortical receptive field properties. Brain Res. 1971 Sep 24;32(2):460–466. doi: 10.1016/0006-8993(71)90340-4. [DOI] [PubMed] [Google Scholar]
  13. Hoffmann K. P., Stone J., Sherman S. M. Relay of receptive-field properties in dorsal lateral geniculate nucleus of the cat. J Neurophysiol. 1972 Jul;35(4):518–531. doi: 10.1152/jn.1972.35.4.518. [DOI] [PubMed] [Google Scholar]
  14. Hubel D. H., Wiesel T. N. Laminar and columnar distribution of geniculo-cortical fibers in the macaque monkey. J Comp Neurol. 1972 Dec;146(4):421–450. doi: 10.1002/cne.901460402. [DOI] [PubMed] [Google Scholar]
  15. Levick W. R. Another tungsten microelectrode. Med Biol Eng. 1972 Jul;10(4):510–515. doi: 10.1007/BF02474199. [DOI] [PubMed] [Google Scholar]
  16. Marrocco R. T., Brown J. B. Correlation of receptive field properties of monkey LGN cells with the conduction velocity of retinal afferent input. Brain Res. 1975 Jul 4;92(1):137–144. doi: 10.1016/0006-8993(75)90534-x. [DOI] [PubMed] [Google Scholar]
  17. Ogden T. E., Miller R. F. Studies of the optic nerve of the rhesus monkey: nerve fiber spectrum and physiological properties. Vision Res. 1966 Oct;6(9):485–506. [PubMed] [Google Scholar]
  18. Padmos P., Norren D. V. Cone systems interaction in single neurons of the lateral geniculate nucleus of the macaque. Vision Res. 1975 May;15(5):617–619. doi: 10.1016/0042-6989(75)90311-9. [DOI] [PubMed] [Google Scholar]
  19. Sherman S. M., Norton T. T., Casagrande V. A. X- and Y-cells in the dorsal lateral geniculate nucleus of the tree shrew (Tupaia glis). Brain Res. 1975 Jul 25;93(1):152–157. doi: 10.1016/0006-8993(75)90294-2. [DOI] [PubMed] [Google Scholar]
  20. Stone J., Dreher B. Projection of X- and Y-cells of the cat's lateral geniculate nucleus to areas 17 and 18 of visual cortex. J Neurophysiol. 1973 May;36(3):551–567. doi: 10.1152/jn.1973.36.3.551. [DOI] [PubMed] [Google Scholar]
  21. Wiesel T. N., Hubel D. H. Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey. J Neurophysiol. 1966 Nov;29(6):1115–1156. doi: 10.1152/jn.1966.29.6.1115. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES