Abstract
1. A double sucrose-gap voltage-clamp technique has been used to study the effects of acetylcholine on the membrane currents in atrial trabeculae of the bullfrog, Rana catesbeiana. 2. The second, or slow inward (Ca2+/Na+) current, was found to be markedly reduced by concentrations of acetylcholine greater than approximately 2-0 X 10(-8)M. The resulting decrease in net calcium entry provides a straightforward explanation for the negative inotropic action of acetylcholine in atrial muscle. 3. Measurements of membrane resistance near the resting potential showed that relatively high doses of acetylcholine (approximately 10(-7) M) decrease membrane resistance by about twofold. This effect is shown to be the result of an increase in a time-independent background current which appears to be carried mainly by potassium ions. 4. Using appropriate pharmacological techniques, it has been possible to demonstrate: (i) that the peak slow inward current is reduced to about half its initial value before any significant increase in background current occurs; (ii) that even when a sufficient dose of acetylcholine to produce an increase in background current is used, the background current shows inward-going rectification and cannot account for the observed reduction in the slow inward current. 5. No consistent change was observed in the degree of activation of the time-dependent outward membrane currents after application of concentrations of acetylcholine which produced large decreases in the peak slow inward current. 6. These results are discussed in relation to previous electro-physiological and radioisotope studies of the mechanism of the negative inotropic effect of acetylcholine in cardiac muscle.
Full text
PDF![103](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee0d/1309130/b69bea230818/jphysiol00834-0125.png)
![104](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee0d/1309130/7a254a1c8368/jphysiol00834-0126.png)
![105](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee0d/1309130/e746f1430864/jphysiol00834-0127.png)
![106](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee0d/1309130/7d8516b72ff5/jphysiol00834-0128.png)
![107](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee0d/1309130/24f21d06036c/jphysiol00834-0129.png)
![108](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee0d/1309130/cce75406e2fb/jphysiol00834-0130.png)
![109](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee0d/1309130/5f30ede54aaa/jphysiol00834-0131.png)
![110](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee0d/1309130/6c19402cdc90/jphysiol00834-0132.png)
![111](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee0d/1309130/8709e1e7b613/jphysiol00834-0133.png)
![112](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee0d/1309130/1e240aaf6f72/jphysiol00834-0134.png)
![113](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee0d/1309130/2b6fe21b55ef/jphysiol00834-0135.png)
![114](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee0d/1309130/5556b64e1bc9/jphysiol00834-0136.png)
![115](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee0d/1309130/022275b01bee/jphysiol00834-0137.png)
![116](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee0d/1309130/7511f3e72a30/jphysiol00834-0138.png)
![117](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee0d/1309130/b93554eaa380/jphysiol00834-0139.png)
![118](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee0d/1309130/e1d9a91c8558/jphysiol00834-0140.png)
![119](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee0d/1309130/536a8c1a9229/jphysiol00834-0141.png)
![120](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee0d/1309130/1f93f4c86af8/jphysiol00834-0142.png)
![121](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee0d/1309130/bc89f493a0d8/jphysiol00834-0143.png)
![122](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee0d/1309130/337e6eb17960/jphysiol00834-0144.png)
![123](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee0d/1309130/12154a7e8440/jphysiol00834-0145.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BURGEN A. S., TERROUX K. G. On the negative inotropic effect in the cat's auricle. J Physiol. 1953 Jun 29;120(4):449–464. doi: 10.1113/jphysiol.1953.sp004910. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blood B. E., Giles W., Noble S. J. Proceedings: Effects of atropine on membrane currents and twitch tension in bullfrog atrium. J Physiol. 1976 Jan;254(1):44P–45P. [PubMed] [Google Scholar]
- Brown H. F., Clark A., Noble S. J. Analysis of pace-maker and repolarization currents in frog atrial muscle. J Physiol. 1976 Jul;258(3):547–577. doi: 10.1113/jphysiol.1976.sp011435. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown H. F., Clark A., Noble S. J. Identification of the pace-maker current in frog atrium. J Physiol. 1976 Jul;258(3):521–545. doi: 10.1113/jphysiol.1976.sp011434. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown H. F., McNaughton P. A., Noble D., Noble S. J. Adrenergic control of cardian pacemaker currents. Philos Trans R Soc Lond B Biol Sci. 1975 Jun 10;270(908):527–537. doi: 10.1098/rstb.1975.0029. [DOI] [PubMed] [Google Scholar]
- Brown H. F., Noble D., Noble S. J. The influence of non-uniformity on the analysis of potassium currents in heart muscle. J Physiol. 1976 Jul;258(3):615–629. doi: 10.1113/jphysiol.1976.sp011437. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown H. F., Noble S. J. Membrane currents underlying delayed rectification and pace-maker activity in frog atrial muscle. J Physiol. 1969 Oct;204(3):717–736. doi: 10.1113/jphysiol.1969.sp008940. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Connor J., Barr L., Jakobsson E. Electrical characteristics of frog atrial trabeculae in the double sucrose gap. Biophys J. 1975 Oct;15(10):1047–1067. doi: 10.1016/S0006-3495(75)85882-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DEL CASTILLO J., KATZ B. Production of membrane potential changes in the frog's heart by inhibitory nerve impulses. Nature. 1955 Jun 11;175(4467):1035–1035. doi: 10.1038/1751035a0. [DOI] [PubMed] [Google Scholar]
- EDWARDS C., KUFFLER S. W., TRAUTWEIN W. Changes in membrane characteristics of heart muscle during inhibition. J Gen Physiol. 1956 Sep 20;40(1):135–145. doi: 10.1085/jgp.40.1.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Einwächter H. M., Haas H. G., Kern R. Membrane current and contraction in frog atrial fibres. J Physiol. 1972 Dec;227(1):141–171. doi: 10.1113/jphysiol.1972.sp010024. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GLITSCH H. G., HAAS H. G., TRAUTWEIN W. THE EFFECT OF ADRENALINE ON THE K AND NA FLUXES IN THE FROG'S ATRIUM. Naunyn Schmiedebergs Arch Exp Pathol Pharmakol. 1965 Feb 2;250:59–71. doi: 10.1007/BF00246883. [DOI] [PubMed] [Google Scholar]
- GROSSMAN A., FURCHGOTT R. F. THE EFFECTS OF VARIOUS DRUGS ON CALCIUM EXCHANGE IN THE ISOLATED GUINEA-PIG LEFT AURICLE. J Pharmacol Exp Ther. 1964 Aug;145:162–172. [PubMed] [Google Scholar]
- Giles W., Tsien R. W. Effects of acetylcholine on membrane currents in frog artrial muscle. J Physiol. 1975 Mar;246(2):64P–66P. [PubMed] [Google Scholar]
- HUTTER O. F. Mode of action of autonomic transmitters on the heart. Br Med Bull. 1957 Sep;13(3):176–180. doi: 10.1093/oxfordjournals.bmb.a069609. [DOI] [PubMed] [Google Scholar]
- HUTTER O. F., TRAUTWEIN W. Vagal and sympathetic effects on the pacemaker fibers in the sinus venosus of the heart. J Gen Physiol. 1956 May 20;39(5):715–733. doi: 10.1085/jgp.39.5.715. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hagiwara S., Nakajima S. Tetrodotoxin and manganese ion: effects on action potential of the frog heart. Science. 1965 Sep 10;149(3689):1254–1255. doi: 10.1126/science.149.3689.1254. [DOI] [PubMed] [Google Scholar]
- Hoditz H., Lüllmann H. Der Einfluss von Acetylcholin auf den Calciumumsatz ruhender und kontrahierender Vorhofmuskulatur in vitro. Experientia. 1964 May 15;20(5):279–280. doi: 10.1007/BF02151808. [DOI] [PubMed] [Google Scholar]
- Johnson E. A., Lieberman M. Heart: excitation and contraction. Annu Rev Physiol. 1971;33:479–532. doi: 10.1146/annurev.ph.33.030171.002403. [DOI] [PubMed] [Google Scholar]
- Kass R. S., Tsien R. W. Multiple effects of calcium antagonists on plateau currents in cardiac Purkinje fibers. J Gen Physiol. 1975 Aug;66(2):169–192. doi: 10.1085/jgp.66.2.169. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ladle R. O., Walker J. L. Intracellular chloride activity in frog heart. J Physiol. 1975 Oct;251(2):549–559. doi: 10.1113/jphysiol.1975.sp011107. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maughan D. W. Some effects of prolonged polarization on membrane currents in bullfrog atrial muscle. J Membr Biol. 1973;11(4):331–352. doi: 10.1007/BF01869829. [DOI] [PubMed] [Google Scholar]
- McGuigan J. A. Some limitations of the double sucrose gap, and its use in a study of the slow outward current in mammalian ventricular muscle. J Physiol. 1974 Aug;240(3):775–806. doi: 10.1113/jphysiol.1974.sp010634. [DOI] [PMC free article] [PubMed] [Google Scholar]
- New W., Trautwein W. Inward membrane currents in mammalian myocardium. Pflugers Arch. 1972;334(1):1–23. doi: 10.1007/BF00585997. [DOI] [PubMed] [Google Scholar]
- Noble S. J. Potassium accumulation and depletion in frog atrial muscle. J Physiol. 1976 Jul;258(3):579–613. doi: 10.1113/jphysiol.1976.sp011436. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prokopczuk A., Lewartowski B., Czarnecka M. On the cellular mechanism of the inotropic action of acetylcholine on isolated rabbit and dog atria. Pflugers Arch. 1973;339(4):305–316. doi: 10.1007/BF00594166. [DOI] [PubMed] [Google Scholar]
- RAYNER B., WEATHERALL M. Acetylcholine and potassium movements in rabbit auricles. J Physiol. 1959 May 19;146(2):392–409. doi: 10.1113/jphysiol.1959.sp006200. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reuter H. Divalent cations as charge carriers in excitable membranes. Prog Biophys Mol Biol. 1973;26:1–43. doi: 10.1016/0079-6107(73)90016-3. [DOI] [PubMed] [Google Scholar]
- Rougier O., Vassort G., Garnier D., Gargouil Y. M., Coraboeuf E. Existence and role of a slow inward current during the frog atrial action potential. Pflugers Arch. 1969;308(2):91–110. doi: 10.1007/BF00587018. [DOI] [PubMed] [Google Scholar]
- TRAUTWEIN W., DUDEL J. Zum Mechanismus der Membranwirkung des Acetylcholin an der Herzmuskelfaser. Pflugers Arch. 1958;266(3):324–334. doi: 10.1007/BF00416781. [DOI] [PubMed] [Google Scholar]
- TRAUTWEIN W. Generation and conduction of impulses in the heart as affected by drugs. Pharmacol Rev. 1963 Jun;15:277–332. [PubMed] [Google Scholar]
- Tarr M., Trank J. W. An assessment of the double sucrose-gap voltage clamp technique as applied to frog atrial muscle. Biophys J. 1974 Sep;14(9):627–643. doi: 10.1016/S0006-3495(74)85940-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ten Eick R., Nawrath H., McDonald T. F., Trautwein W. On the mechanism of the negative inotropic effect of acetylcholine. Pflugers Arch. 1976 Feb 24;361(3):207–213. doi: 10.1007/BF00587284. [DOI] [PubMed] [Google Scholar]
- Vassort G., Rougier O. Membrane potential and slow inward current dependence of frog cardiac mechanical activity. Pflugers Arch. 1972;331(3):191–203. doi: 10.1007/BF00589126. [DOI] [PubMed] [Google Scholar]
- Walker J. L., Ladle R. O. Frog heart intracellular potassium activities measured with potassium microelectrodes. Am J Physiol. 1973 Jul;225(1):263–267. doi: 10.1152/ajplegacy.1973.225.1.263. [DOI] [PubMed] [Google Scholar]
- de Carvalho A. P., Hoffman B. F., de Carvalho M. P. Two components of the cardiac action potential. I. Voltage-time course and the effect of acetylcholine on atrial and nodal cells of the rabbit heart. J Gen Physiol. 1969 Nov;54(5):607–635. doi: 10.1085/jgp.54.5.607. [DOI] [PMC free article] [PubMed] [Google Scholar]