Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1976 Jan;254(2):361–388. doi: 10.1113/jphysiol.1976.sp011236

Charge movement and mechanical repriming in skeletal muscle.

R H Adrian, W K Chandler, R F Rakowski
PMCID: PMC1309198  PMID: 1082510

Abstract

1. Muscles were placed in a solution which depolarized the membrane to -30 to -20 mV so that mechanical activation was made refractory. Mechanical repriming and the recovery of voltage dependent charge movement were studied using a voltage clamp technique. 2. Mechanical repriming was investigated by determining the duration of a hyperpolarizing pulse required to elicit a just-visible contraction for various post-pulse potentials. As the post-pulse potential was made more positive shorter repriming times were required to produce a threshold contraction. The relationship approached a minimum repriming time for very positive post-pulse potentials. 3. These results suggest that hyperpolarization gradually removes some component of the activation mechanism from a refractory state and that the effectiveness of the amount which has recovered depends on the post-pulse potential. A quantitative explanation is given using a simple model in which the essential component is assumed to be the charge movement process. 4. The rate of repriming contraction is voltage dependent; at -160 mV the rate is about twice that at -120 mV. Between 4 and 10 degrees C the rate has a Q10 of about 9. 5. Recovery of charge movement was studied using a repriming duration less than that required to produce a threshold contraction. The observed charge movement increased linearly with repriming time, consistent with the approximately linear initial segment of a slow exponential recovery process. Extrapolation of the recovery curve indicated that 2-5 n/CmuF of charge is reprimed in the time necessary to reprime a threshold contraction. 6. The charge which recovers during a subthreshold repriming pulse is distributed according to membrane potential in the same way as a fully reprimed charge. 7. These results are consistent with the hypothesis that voltage dependent charge movement is an intermediate step in excitation-contraction coupling. 8. The characteristics of a second type of charge movement are also described.

Full text

PDF
361

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adrian R. H., Almers W. Charge movement in the membrane of striated muscle. J Physiol. 1976 Jan;254(2):339–360. doi: 10.1113/jphysiol.1976.sp011235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Adrian R. H., Almers W. The voltage dependence of membrane capacity. J Physiol. 1976 Jan;254(2):317–338. doi: 10.1113/jphysiol.1976.sp011234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Adrian R. H., Chandler W. K., Hodgkin A. L. Voltage clamp experiments in striated muscle fibres. J Physiol. 1970 Jul;208(3):607–644. doi: 10.1113/jphysiol.1970.sp009139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Almers W. Observations on intramembrane charge movements in skeletal muscle. Philos Trans R Soc Lond B Biol Sci. 1975 Jun 10;270(908):507–513. doi: 10.1098/rstb.1975.0027. [DOI] [PubMed] [Google Scholar]
  5. Chandler W. K., Rakowski R. F., Schneider M. F. A non-linear voltage dependent charge movement in frog skeletal muscle. J Physiol. 1976 Jan;254(2):245–283. doi: 10.1113/jphysiol.1976.sp011232. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chandler W. K., Rakowski R. F., Schneider M. F. Effects of glycerol treatment and maintained depolarization on charge movement in skeletal muscle. J Physiol. 1976 Jan;254(2):285–316. doi: 10.1113/jphysiol.1976.sp011233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chandler W. K., Schneider M. F., Rakowski R. F., Adrian R. H. Charge movements in skeletal muscle. Philos Trans R Soc Lond B Biol Sci. 1975 Jun 10;270(908):501–505. doi: 10.1098/rstb.1975.0026. [DOI] [PubMed] [Google Scholar]
  8. HODGKIN A. L., HOROWICZ P. Potassium contractures in single muscle fibres. J Physiol. 1960 Sep;153:386–403. doi: 10.1113/jphysiol.1960.sp006541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Schneider M. F., Chandler W. K. Voltage dependent charge movement of skeletal muscle: a possible step in excitation-contraction coupling. Nature. 1973 Mar 23;242(5395):244–246. doi: 10.1038/242244a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES