Abstract
1. The rate of fast axoplasmic transport in cat sensory nerves was determined in sciatic nerves above transections made low in the popliteal fossa some 6-165 days beforehand. The pattern and rate of movement of the crest of labelled components in the nerve fibres after injecting the L7 dorsal root with [3H]leucine was used to characterize fast axoplasmic transport. 2. The mean rate and S.D. found on the transected side was 424 + 33 mm/day compared with 432 +/- 34 mm/day for the control nerves. These rates were not significantly different and were similar to the rate of axoplasmic transport previously reported to be 410 +/- 50 mm/day. The results gave little support for the hypothesis that a speeding up of the rate of fast axoplasmic transport is the signal for the initiation of chromatolysis. 3. The amount of transport shown by the level of activity in the crests on the chromatolytic and control sides relative to the "pool" of radioactive materials remaining in the cell bodies of the ganglion were also similar. The significance of these findings was discussed with respect to changes in the cell bodies known to take place during chromatolysis and the stability of the axoplasmic transport mechanism in nerve fibres.
Full text
PDF












Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BRATTGARD S. O., EDSTROM J. E., HYDEN H. The productive capacity of the neuron in retrograde reaction. Exp Cell Res. 1958;14(Suppl 5):185–200. [PubMed] [Google Scholar]
- Byers M. R., Fink B. R., Kennedy R. D., Middaugh M. E., Hendrickson A. E. Effects of lidocaine on axonal morphology, microtubules, and rapid transport in rabbit vagus nerve in vitro. J Neurobiol. 1973;4(2):125–143. doi: 10.1002/neu.480040205. [DOI] [PubMed] [Google Scholar]
- Carlsson C. A., Bolander P., Sjöstrand J. Changes in axonal transport during regeneration of feline ventral roots. J Neurol Sci. 1971 Sep;14(1):75–93. doi: 10.1016/0022-510x(71)90131-6. [DOI] [PubMed] [Google Scholar]
- Cragg B. G. What is the signal for chromatolysis? Brain Res. 1970 Sep 29;23(1):1–21. doi: 10.1016/0006-8993(70)90345-8. [DOI] [PubMed] [Google Scholar]
- Engh C. A., Schofield B. H. A review of the central response to peripheral nerve injury and its significance in nerve regeneration. J Neurosurg. 1972 Aug;37(2):195–203. doi: 10.3171/jns.1972.37.2.0195. [DOI] [PubMed] [Google Scholar]
- Engh C. A., Schofield B. H., Doty S. B., Robinson R. A. Perikaryal synthetic function following reversible and irreversible peripheral axon injuries as shown by radioautography. J Comp Neurol. 1971 Aug;142(4):465–479. doi: 10.1002/cne.901420405. [DOI] [PubMed] [Google Scholar]
- Francoeur J., Olszewski J. Axonal reaction and axoplasmic flow as studies by radioautography. Neurology. 1968 Feb;18(2):178–184. doi: 10.1212/wnl.18.2.178. [DOI] [PubMed] [Google Scholar]
- Grafstein B., Murray M. Transport of protein in goldfish optic nerve during regeneration. Exp Neurol. 1969 Dec;25(4):494–508. doi: 10.1016/0014-4886(69)90093-4. [DOI] [PubMed] [Google Scholar]
- Johnson J. L. Changes in acetylcholinesterase, acid phosphatase and beta glucuronidase proximal to a nerve crush. Brain Res. 1970 Mar 17;18(3):427–440. doi: 10.1016/0006-8993(70)90126-5. [DOI] [PubMed] [Google Scholar]
- Kidwai A. M., Ochs S. Components of fast and slow phases of axoplasmic flow. J Neurochem. 1969 Jul;16(7):1105–1112. doi: 10.1111/j.1471-4159.1969.tb05955.x. [DOI] [PubMed] [Google Scholar]
- Kreutzberg G. W., Schubert P. Changes in axonal flow during regeneration of mammalian motor nerves. Acta Neuropathol. 1971;5(Suppl):70–75. doi: 10.1007/978-3-642-47449-1_9. [DOI] [PubMed] [Google Scholar]
- Kreutzberg G. W., Schubert P. Volume changes in the axon during regeneration. Acta Neuropathol. 1971;17(3):220–226. doi: 10.1007/BF00685055. [DOI] [PubMed] [Google Scholar]
- Lieberman A. R. The axon reaction: a review of the principal features of perikaryal responses to axon injury. Int Rev Neurobiol. 1971;14:49–124. doi: 10.1016/s0074-7742(08)60183-x. [DOI] [PubMed] [Google Scholar]
- MIANI N., RIZZOLI A., BUCCIANTE G. Metabolic and chemical changes in regenerating neurons. II. In vitro rate of incorporation of amino acids into proteins of the nerve cell perikaryon of the C.8 spinal ganglion of rabbit. J Neurochem. 1961 Jul;7:161–173. doi: 10.1111/j.1471-4159.1961.tb13500.x. [DOI] [PubMed] [Google Scholar]
- OCHS S., DALRYMPLE D., RICHARDS G. Axoplasmic flow in ventral root nerve fibers of the cat. Exp Neurol. 1962 May;5:349–363. doi: 10.1016/0014-4886(62)90049-3. [DOI] [PubMed] [Google Scholar]
- OCHS S., KACHMANN R., DEMYER W. E. Axoplasmic flow rates during nerve regeneration. Exp Neurol. 1960 Dec;2:627–637. doi: 10.1016/0014-4886(60)90037-6. [DOI] [PubMed] [Google Scholar]
- Ochs S., Jersild R. A., Jr Fast axoplasmic transport in nonmyelinated mammalian nerve fibers shown by electron microscopic radioautography. J Neurobiol. 1974;5(4):373–377. doi: 10.1002/neu.480050408. [DOI] [PubMed] [Google Scholar]
- Ochs S., Johnson J. Fast and slow phases of axoplasmic flow in ventral root nerve fibres. J Neurochem. 1969 Jun;16(3):845–853. doi: 10.1111/j.1471-4159.1969.tb08972.x. [DOI] [PubMed] [Google Scholar]
- Ochs S. Rate of fast axoplasmic transport in mammalian nerve fibres. J Physiol. 1972 Dec;227(3):627–645. doi: 10.1113/jphysiol.1972.sp010051. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ochs S., Sabri M. I., Johnson J. Fast transport system of materials in mammalian nerve fibers. Science. 1969 Feb 14;163(3868):686–687. doi: 10.1126/science.163.3868.686. [DOI] [PubMed] [Google Scholar]
- Ochs S., Sabri M. I., Ranish N. Somal site of synthesis of fast transported materials in mammalian nerve fibers. J Neurobiol. 1969;1(3):329–344. doi: 10.1002/neu.480010308. [DOI] [PubMed] [Google Scholar]
- Ochs S., Smith C. Low temperature slowing and cold-block of fast axoplasmic transport in mammalian nerves in vitro. J Neurobiol. 1975 Jan;6(1):85–102. doi: 10.1002/neu.480060112. [DOI] [PubMed] [Google Scholar]
- Ochs S. Trophic functions of the neuron. 3. Mechanisms of neurotrophic interactions. Systems of material transport in nerve fibers (axoplasmic transport) related to nerve function and trophic control. Ann N Y Acad Sci. 1974 Mar 22;228(0):202–223. doi: 10.1111/j.1749-6632.1974.tb20511.x. [DOI] [PubMed] [Google Scholar]
- Ranish N., Ochs S. Fast axoplasmic transport of acetylcholinesterase in mammalian nerve fibres. J Neurochem. 1972 Nov;19(11):2641–2649. doi: 10.1111/j.1471-4159.1972.tb01323.x. [DOI] [PubMed] [Google Scholar]
- Torvik A., Heding A. Histological studies on the effect of actinomycin D on retrograde nerve cell reaction in the facial nucleus of mice. Acta Neuropathol. 1967 Oct 20;9(2):146–157. doi: 10.1007/BF00691440. [DOI] [PubMed] [Google Scholar]
- Watson W. E. An autoradiographic study of the incorporation of nucleic-acid precursors by neurones and glia during nerve regeneration. J Physiol. 1965 Oct;180(4):741–753. doi: 10.1113/jphysiol.1965.sp007728. [DOI] [PMC free article] [PubMed] [Google Scholar]
