Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1976 Mar;256(1):227–244. doi: 10.1113/jphysiol.1976.sp011322

Calcium-dependent potassium exchange in human red cell ghosts.

T J Simons
PMCID: PMC1309302  PMID: 933034

Abstract

1. The properties of the Ca-dependent K transport system of human red cell ghosts have been examined under equilibrium exchange conditions. 2. K transport is stimulated half-maximally by about 0-4muM-Ca2i+ or 5muM-Sr2i+, but much higher concentrations of Ba2i+ give only slight stimulation. Mg is a weak antagonist to Ca. 3. The free Ca2+ concentration in human red cells is estimated to be below 0-25muM. 4. The curve relating the rate of K transport to the intracellular Ca2+ concentration is complicated and suggests that internal Ca acts at three or more sites. 5. K, Rb and possibly Cs ions are transported by the Ca-dependent system. Under comparable conditions the relative rates are 1(K):1-5(Rb): less than 0-05(Cs). 6. No Ca-dependent transport of Na, Li or choline could be detected. If Na is transported, it must be at less than 1/40 of the rate of K. 7. The rate of K transport is almost linearly related to the K concentration in the 0-200 mM range, but the curve is sigmoid close to the origin. 8. Intracellular, but not extracellular Na inhibits K transport, in a way that suggests competition with K at more than one site. 9. These results suggest that the transport system has a complex mechanism.

Full text

PDF
227

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berger H., Jänig G. R., Gerber G., Ruckpaul K., Rapoport S. M. Interaction of haemoglobin with ions. Interactions among magnesium, adenosine 5'-triphosphate, 2,3-bisphosphoglycerate, and oxygenated and deoxygenated human haemoglobin under simulated intracellular conditions. Eur J Biochem. 1973 Oct 18;38(3):553–562. doi: 10.1111/j.1432-1033.1973.tb03090.x. [DOI] [PubMed] [Google Scholar]
  2. GARDOS G. The permeability of human erythrocytes to potassium. Acta Physiol Acad Sci Hung. 1956;10(2-4):185–189. [PubMed] [Google Scholar]
  3. Glynn I. M., Lew V. L., Lüthi U. Reversal of the potassium entry mechanism in red cells, with and without reversal of the entire pump cycle. J Physiol. 1970 Apr;207(2):371–391. doi: 10.1113/jphysiol.1970.sp009067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Isnberg G. Is potassium conductance of cardiac Purkinje fibres controlled by (Ca2+)? Nature. 1975 Jan 24;253(5489):273–274. doi: 10.1038/253273a0. [DOI] [PubMed] [Google Scholar]
  5. Krnjević K., Lisiewicz A. Injections of calcium ions into spinal motoneurones. J Physiol. 1972 Sep;225(2):363–390. doi: 10.1113/jphysiol.1972.sp009945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Lew V. L. On the ATP dependence of the Ca 2+ -induced increase in K + permeability observed in human red cells. Biochim Biophys Acta. 1971 Jun 1;233(3):827–830. doi: 10.1016/0005-2736(71)90185-4. [DOI] [PubMed] [Google Scholar]
  7. Lieb W. R., Stein W. D. Testing and characterizing the simple carrier. Biochim Biophys Acta. 1974 Dec 10;373(2):178–196. doi: 10.1016/0005-2736(74)90144-8. [DOI] [PubMed] [Google Scholar]
  8. Lieb W. R., Stein W. D. Testing and characterizing the simple pore. Biochim Biophys Acta. 1974 Dec 10;373(2):165–177. doi: 10.1016/0005-2736(74)90143-6. [DOI] [PubMed] [Google Scholar]
  9. Meech R. W., Standen N. B. Potassium activation in Helix aspersa neurones under voltage clamp: a component mediated by calcium influx. J Physiol. 1975 Jul;249(2):211–239. doi: 10.1113/jphysiol.1975.sp011012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Meech R. W. The sensitivity of Helix aspersa neurones to injected calcium ions. J Physiol. 1974 Mar;237(2):259–277. doi: 10.1113/jphysiol.1974.sp010481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Porzig H. Comparative study of the effects of propranolol and tetracaine on cation movements in resealed human red cell ghosts. J Physiol. 1975 Jul;249(1):27–49. doi: 10.1113/jphysiol.1975.sp011001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Romero P. J., Whittam R. The control by internal calcium of membrane permeability to sodium and potassium. J Physiol. 1971 May;214(3):481–507. doi: 10.1113/jphysiol.1971.sp009445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Schatzmann H. J. Dependence on calcium concentration and stoichiometry of the calcium pump in human red cells. J Physiol. 1973 Dec;235(2):551–569. doi: 10.1113/jphysiol.1973.sp010403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Simons T. J. The preparation of human red cell ghosts containing calcium buffers. J Physiol. 1976 Mar;256(1):209–225. doi: 10.1113/jphysiol.1976.sp011321. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES