Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1976 Mar;256(1):245–256. doi: 10.1113/jphysiol.1976.sp011323

A study of the transport and permeability properties of the guinea-pig amniotic membrane.

P M North, M B Segal
PMCID: PMC1309303  PMID: 933035

Abstract

1. The simultaneous measurement of the two-way sodium flux across the in vitro amniotic epithelium did not reveal a preferential active movement of sodium in either direction. The amnion is thus unlikely to be the site of formation of amniotic fluid. 2. The permeability of the amniotic epithelium to some non-electrolytes has been measured with isotopes and was found to be generally low in relation to the thinness of the tissue. The permeability to non-electroytes would appear to be depebility to sodium and to non-electrolytes was found to vary with gestational age. The amnion from animals of 61-70 days' gestation was markedly more permanent than those at 50-60 days (term 70 days).

Full text

PDF
245

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALEXANDER D. P., NIXON D. A., WIDDAS W. F., WOHLZOGEN F. X. Renal function in the sheep foetus. J Physiol. 1958 Jan 23;140(1):14–22. doi: 10.1113/jphysiol.1958.sp005912. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anderson W. R., McKay D. G. Electron microscope study of the trophoblast in normal and toxemic placentas. Am J Obstet Gynecol. 1966 Aug 15;95(8):1134–1148. doi: 10.1016/s0002-9378(66)80016-9. [DOI] [PubMed] [Google Scholar]
  3. Armstrong W. D., Wilt J. C., Pritchard E. T. Vacuolation in the human amnion cell studies by time-- lapse photography and electron microscopy. Am J Obstet Gynecol. 1968 Dec 1;102(7):932–948. doi: 10.1016/0002-9378(68)90452-3. [DOI] [PubMed] [Google Scholar]
  4. Barton T. C., Baker C. Permeability of human amnion and chorion membrane. Am J Obstet Gynecol. 1967 Jun 15;98(4):562–567. doi: 10.1016/0002-9378(67)90111-1. [DOI] [PubMed] [Google Scholar]
  5. Brame R. G., Harbert G. M., Jr, McGaughey H. S., Jr, Thornton W. N., Jr Fetomaternal exchange of sodium. A possible mechanism of the formation of hydramnios. Obstet Gynecol. 1968 Aug;32(2):241–248. [PubMed] [Google Scholar]
  6. DANFORTH D., HULL R. W. The microscopic anatomy of the fetal membranes with particular reference to the detailed structure of the amnion. Am J Obstet Gynecol. 1958 Mar;75(3):536–550. doi: 10.1016/0002-9378(58)90610-0. [DOI] [PubMed] [Google Scholar]
  7. Diamond J. M. A rapid method for determining voltage-concentration relations across membranes. J Physiol. 1966 Mar;183(1):83–100. doi: 10.1113/jphysiol.1966.sp007852. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Diamond J. M., Wright E. M. Biological membranes: the physical basis of ion and nonelectrolyte selectivity. Annu Rev Physiol. 1969;31:581–646. doi: 10.1146/annurev.ph.31.030169.003053. [DOI] [PubMed] [Google Scholar]
  9. FARQUHAR M. G., PALADE G. E. FUNCTIONAL ORGANIZATION OF AMPHIBIAN SKIN. Proc Natl Acad Sci U S A. 1964 Apr;51:569–577. doi: 10.1073/pnas.51.4.569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. FAWCETT D. W. SURFACE SPECIALIZATIONS OF ABSORBING CELLS. J Histochem Cytochem. 1965 Feb;13:75–91. doi: 10.1177/13.2.75. [DOI] [PubMed] [Google Scholar]
  11. French G. L., MacLennan A. H., Wynn R. M. Nucleoside phosphatases in human amnion. Ultrastructural localization. Obstet Gynecol. 1971 Feb;37(2):173–182. [PubMed] [Google Scholar]
  12. GOLDSTEIN D. A., SOLOMON A. K. Determination of equivalent pore radius for human red cells by osmotic pressure measurement. J Gen Physiol. 1960 Sep;44:1–17. doi: 10.1085/jgp.44.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Keynes R. D. From frog skin to sheep rumen: a survey of transport of salts and water across multicellular structures. Q Rev Biophys. 1969 Aug;2(3):177–281. doi: 10.1017/s0033583500001086. [DOI] [PubMed] [Google Scholar]
  14. Thomas C. E. The ultrastructure of human amnion epithelium. J Ultrastruct Res. 1965 Aug;13(1):65–83. doi: 10.1016/s0022-5320(65)80089-2. [DOI] [PubMed] [Google Scholar]
  15. Tormey J. M., Diamond J. M. The ultrastructural route of fluid transport in rabbit gall bladder. J Gen Physiol. 1967 Sep;50(8):2031–2060. doi: 10.1085/jgp.50.8.2031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. USSING H. H. The active ion transport through the isolated frog skin in the light of tracer studies. Acta Physiol Scand. 1949 Jan 31;17(1):1–37. doi: 10.1111/j.1748-1716.1949.tb00550.x. [DOI] [PubMed] [Google Scholar]
  17. WRIGHT G. H. Net transfers of water, sodium, chloride and hydrogen ions across the gastric mucosa of the rabbit foetus. J Physiol. 1962 Sep;163:281–293. doi: 10.1113/jphysiol.1962.sp006974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Wright E. M., Diamond J. M. Patterns of non-electrolyte permeability. Proc R Soc Lond B Biol Sci. 1969 Mar 18;171(1028):227–271. doi: 10.1098/rspb.1969.0021. [DOI] [PubMed] [Google Scholar]
  19. Wynn R. M., French G. L. Comparative ultrastructure of the mammalian amnion. Obstet Gynecol. 1968 Jun;31(6):759–774. [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES