Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1976 May;257(1):137–154. doi: 10.1113/jphysiol.1976.sp011360

The regulation of cellular volume in renal cortical slices incubated in hyposmotic medium.

P M Hughes, D C Macknight
PMCID: PMC1309348  PMID: 948046

Abstract

1. Changes in water and ion contents of renal cortical slices from rat, rabbit and guinea-pig incubated in medium of a half normal osmolarity were followed over 60 min incubation at 25 degrees C.2. Metabolizing slices gained water and lost sodium and chloride but not potassium. These changes reflected in part changes in cellular composition, and were complete within 5 min. A new steady-state was then maintained for a further 55 min.3. Slices initially incubated for 60 min with ouabain, also lost sodium and chloride when transferred to the hyposmotic medium but did not, in the first minutes, lose any further potassium. Ouabain, in concentrations sufficient to produce maximal inhibition of the Na-K ATPase, did not cause additional cellular swelling in the hyposmotic medium.4. The results offer no support for the claim that cellular volume in metabolizing renal cortical cells exposed to hyposmotic media is regulated by loss of cellular potassium. They suggest that under such conditions the regulation of volume involves the same ouabain-insensitive mechanism as is seen in cells incubated in isosmotic medium.

Full text

PDF
137

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. COTLOVE E., TRANTHAM H. V., BOWMAN R. L. An instrument and method for automatic, rapid, accurate, and sensitive titration of chloride in biologic samples. J Lab Clin Med. 1958 Mar;51(3):461–468. [PubMed] [Google Scholar]
  2. Daniel E. E., Robinson K. Effects of inhibitors of active transport on 22 Na and 42 K movements and on nucleotide levels in rat uteri at 25 degrees C. Can J Physiol Pharmacol. 1971 Mar;49(3):178–204. doi: 10.1139/y71-025. [DOI] [PubMed] [Google Scholar]
  3. Dellasega M., Grantham J. J. Regulation of renal tubule cell volume in hypotonic media. Am J Physiol. 1973 Jun;224(6):1288–1294. doi: 10.1152/ajplegacy.1973.224.6.1288. [DOI] [PubMed] [Google Scholar]
  4. Giebisch G., Boulpaep E. L., Whittembury G. Electrolyte transport in kidney tubule cells. Philos Trans R Soc Lond B Biol Sci. 1971 Aug 20;262(842):175–196. doi: 10.1098/rstb.1971.0088. [DOI] [PubMed] [Google Scholar]
  5. KLEINZELLER A., KNOTKOVA A. ELECTROLYTE TRANSPORT IN RAT DIAPHRAGM. Physiol Bohemoslov. 1964;13:317–326. [PubMed] [Google Scholar]
  6. KLEINZELLER A., KNOTKOVA A. THE EFFECT OF OUABAIN ON THE ELECTROLYTE AND WATER TRANSPORT IN KIDNEY CORTEX AND LIVER SLICES. J Physiol. 1964 Dec;175:172–192. doi: 10.1113/jphysiol.1964.sp007510. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kregenow F. M. Functional separation of the Na-K exchange pump from the volume controlling mechanism in enlarged duck red cells. J Gen Physiol. 1974 Oct;64(4):393–412. doi: 10.1085/jgp.64.4.393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kregenow F. M. The response of duck erythrocytes to nonhemolytic hypotonic media. Evidence for a volume-controlling mechanism. J Gen Physiol. 1971 Oct;58(4):372–395. doi: 10.1085/jgp.58.4.372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kregenow F. M. The response of duck erythrocytes to norepinephrine and an elevated extracellular potassium. Volume regulation in isotonic media. J Gen Physiol. 1973 Apr;61(4):509–527. doi: 10.1085/jgp.61.4.509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. LEAF A. On the mechanism of fluid exchange of tissues in vitro. Biochem J. 1956 Feb;62(2):241–248. doi: 10.1042/bj0620241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. LITTLE J. R. DETERMINATION OF WATER AND ELECTROLYTES IN TISSUE SLICES. Anal Biochem. 1964 Jan;7:87–95. doi: 10.1016/0003-2697(64)90122-8. [DOI] [PubMed] [Google Scholar]
  12. MUDGE G. H. Studies on potassium accumulation by rabbit kidney slices; effect of metabolic activity. Am J Physiol. 1951 Apr 1;165(1):113–127. doi: 10.1152/ajplegacy.1951.165.1.113. [DOI] [PubMed] [Google Scholar]
  13. Macknight A. D., Pilgrim J. P., Robinson B. A. The regulation of cellular volume in liver slices. J Physiol. 1974 Apr;238(2):279–294. doi: 10.1113/jphysiol.1974.sp010524. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Macknight A. D. The effects of ethacrynic acid on the electrolyte and water contents of rat renal cortical slices. Biochim Biophys Acta. 1969 Mar 11;173(2):223–233. doi: 10.1016/0005-2736(69)90106-0. [DOI] [PubMed] [Google Scholar]
  15. Macknight A. D. Water and electrolyte contents of rat renal cortical slices incubated in potassium-free media and media containing ouabain. Biochim Biophys Acta. 1968 Mar 1;150(2):263–270. doi: 10.1016/0005-2736(68)90169-7. [DOI] [PubMed] [Google Scholar]
  16. McIver D. J., Macknight A. D. Extracellular space in some isolated tissues. J Physiol. 1974 May;239(1):31–49. doi: 10.1113/jphysiol.1974.sp010554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. ROBINSON J. R. Metabolism of intracellular water. Physiol Rev. 1960 Jan;40:112–149. doi: 10.1152/physrev.1960.40.1.112. [DOI] [PubMed] [Google Scholar]
  18. ROBINSON J. R. Osmoregulation in surviving slices from the kidneys of adult rats. Proc R Soc Lond B Biol Sci. 1950 Oct 13;137(888):378–402. doi: 10.1098/rspb.1950.0048. [DOI] [PubMed] [Google Scholar]
  19. WHITTAM R., WILLIS J. S. ION MOVEMENTS AND OXYGEN CONSUMPTION IN KIDNEY CORTEX SLICES. J Physiol. 1963 Aug;168:158–177. doi: 10.1113/jphysiol.1963.sp007184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Whittembury G. Sodium and water transport in kidney proximal tubular cells. J Gen Physiol. 1968 May 1;51(5):303–314. [PMC free article] [PubMed] [Google Scholar]
  21. Willis J. S. Characteristics of ion transport in kidney cortex of mammalian hibernators. J Gen Physiol. 1966 Jul;49(6):1221–1239. doi: 10.1085/jgp.0491221. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES