Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1976 May;257(1):155–170. doi: 10.1113/jphysiol.1976.sp011361

Kittens reared in a unidirectional environment: evidence for a critical period.

N W Daw, H J Wyatt
PMCID: PMC1309349  PMID: 948048

Abstract

1. Kittens were reared in the dark from birth except for a period each day when they were put inside a stationary transparent cylinder, around which a drum with vertical black and white stripes on the inside, rotated in one direction. After the end of the period of exposure, we recorded a sample of single cells from their visual cortices, and analysed each cell for direction and orientation sensitivity and other properties. 2. Two kittens were placed inside the drum, rotating rightward, for 2 hr each seekday from 3 1/2 to 7 weeks of age. A greater proportion of the directionally sensitive cells in their cortices showed a preference for rightward movement. 3. Six other kittens were placed inside the drug for 1 hr each weekday from 2 to 12 weeks of age with the drum rotating leftward up to a particular changeover age, then rightward until 12 weeks. The changeover point occurred at 21, 26, 28, 33, 35 and 51 days for different kittens. A changeover earlier than 4 weeks of age led to a preponderance of cells preferring rightward movement. A changeover later than 5 weeks of age led to a preponderance of cells preferring leftward movement. Comparison of these results with others on monocular deprivation suggests that the peak of the critical period for directional deprivation may occur earlier than the peak of the critical period for monocular deprivation. 4. None of the samples of cells showed a preponderance of cells specific for vertical orientations. It is unclear whether this negative effect resulted from the presence of some horizontal contours during exposure, or some more fundamental cause.

Full text

PDF
155

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berman N., Cynader M. Comparison of receptive-field organization of the superior colliculus in Siamese and normal cats. J Physiol. 1972 Jul;224(2):363–389. doi: 10.1113/jphysiol.1972.sp009900. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bishop P. O., Coombs J. S., Henry G. H. Interaction effects of visual contours on the discharge frequency of simple striate neurones. J Physiol. 1971 Dec;219(3):659–687. doi: 10.1113/jphysiol.1971.sp009682. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bishop P. O., Coombs J. S., Henry G. H. Responses to visual contours: spatio-temporal aspects of excitation in the receptive fields of simple striate neurones. J Physiol. 1971 Dec;219(3):625–657. doi: 10.1113/jphysiol.1971.sp009681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Blakemore C., Cooper G. F. Development of the brain depends on the visual environment. Nature. 1970 Oct 31;228(5270):477–478. doi: 10.1038/228477a0. [DOI] [PubMed] [Google Scholar]
  5. Blakemore C., Mitchell D. E. Environmental modification of the visual cortex and the neural basis of learning and memory. Nature. 1973 Feb 16;241(5390):467–468. doi: 10.1038/241467a0. [DOI] [PubMed] [Google Scholar]
  6. Blakemore C., Papaioannou J. Does the vestibular apparatus play a role in the development of the visual system? J Physiol. 1974 Jan;236(2):373–385. doi: 10.1113/jphysiol.1974.sp010440. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Blakemore C., Van Sluyters R. C. Innate and environmental factors in the development of the kitten's visual cortex. J Physiol. 1975 Jul;248(3):663–716. doi: 10.1113/jphysiol.1975.sp010995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Blakemore C., Van Sluyters R. C. Reversal of the physiological effects of monocular deprivation in kittens: further evidence for a sensitive period. J Physiol. 1974 Feb;237(1):195–216. doi: 10.1113/jphysiol.1974.sp010478. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. CARRERAS M., ANDERSSON S. A. Functional properties of neurons of the anterior ectosylvian gyrus of the cat. J Neurophysiol. 1963 Jan;26:100–126. doi: 10.1152/jn.1963.26.1.100. [DOI] [PubMed] [Google Scholar]
  10. Cynader M., Berman N., Hein A. Cats reared in stroboscopic illumination: effects on receptive fields in visual cortex. Proc Natl Acad Sci U S A. 1973 May;70(5):1353–1354. doi: 10.1073/pnas.70.5.1353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Daw N. W., Wyatt H. J. Raising rabbits in a moving visual environment: an attempt to modify directional sensitivity in the retina. J Physiol. 1974 Jul;240(2):309–330. doi: 10.1113/jphysiol.1974.sp010612. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dews P. B., Wiesel T. N. Consequences of monocular deprivation on visual behaviour in kittens. J Physiol. 1970 Feb;206(2):437–455. doi: 10.1113/jphysiol.1970.sp009023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Freeman R. D., Pettigrew J. D. Alteration of visual cortex from environmental asymmetries. Nature. 1973 Dec 7;246(5432):359–360. doi: 10.1038/246359a0. [DOI] [PubMed] [Google Scholar]
  14. HUBEL D. H., WIESEL T. N. RECEPTIVE FIELDS AND FUNCTIONAL ARCHITECTURE IN TWO NONSTRIATE VISUAL AREAS (18 AND 19) OF THE CAT. J Neurophysiol. 1965 Mar;28:229–289. doi: 10.1152/jn.1965.28.2.229. [DOI] [PubMed] [Google Scholar]
  15. HUBEL D. H., WIESEL T. N. RECEPTIVE FIELDS OF CELLS IN STRIATE CORTEX OF VERY YOUNG, VISUALLY INEXPERIENCED KITTENS. J Neurophysiol. 1963 Nov;26:994–1002. doi: 10.1152/jn.1963.26.6.994. [DOI] [PubMed] [Google Scholar]
  16. HUBEL D. H., WIESEL T. N. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J Physiol. 1962 Jan;160:106–154. doi: 10.1113/jphysiol.1962.sp006837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hirsch H. V., Spinelli D. N. Modification of the distribution of receptive field orientation in cats by selective visual exposure during development. Exp Brain Res. 1971 Jun 29;12(5):509–527. doi: 10.1007/BF00234246. [DOI] [PubMed] [Google Scholar]
  18. Hirsch H. V., Spinelli D. N. Visual experience modifies distribution of horizontally and vertically oriented receptive fields in cats. Science. 1970 May 15;168(3933):869–871. doi: 10.1126/science.168.3933.869. [DOI] [PubMed] [Google Scholar]
  19. Hubel D. H. Tungsten Microelectrode for Recording from Single Units. Science. 1957 Mar 22;125(3247):549–550. doi: 10.1126/science.125.3247.549. [DOI] [PubMed] [Google Scholar]
  20. Hubel D. H., Wiesel T. N. The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J Physiol. 1970 Feb;206(2):419–436. doi: 10.1113/jphysiol.1970.sp009022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Movshon J. A. The velocity tuning of single units in cat striate cortex. J Physiol. 1975 Aug;249(3):445–468. doi: 10.1113/jphysiol.1975.sp011025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Muir D. W., Mitchell D. E. Behavioral deficits in cats following early selected visual exposure to contours of a single orientation. Brain Res. 1975 Mar 7;85(3):459–477. doi: 10.1016/0006-8993(75)90820-3. [DOI] [PubMed] [Google Scholar]
  23. Olson C. R., Freeman R. D. Progressive changes in kitten striate cortex during monocular vision. J Neurophysiol. 1975 Jan;38(1):26–32. doi: 10.1152/jn.1975.38.1.26. [DOI] [PubMed] [Google Scholar]
  24. Olson C. R., Pettigrew J. D. Single units in visual cortex of kittens reared in stroboscopic illumination. Brain Res. 1974 Apr 19;70(2):189–204. doi: 10.1016/0006-8993(74)90312-6. [DOI] [PubMed] [Google Scholar]
  25. Palmer L. A., Rosenquist A. C. Visual receptive fields of single striate corical units projecting to the superior colliculus in the cat. Brain Res. 1974 Feb 15;67(1):27–42. doi: 10.1016/0006-8993(74)90295-9. [DOI] [PubMed] [Google Scholar]
  26. Pettigrew J. D., Freeman R. D. Visual experience without lines: effect on developing cortical neurons. Science. 1973 Nov 9;182(4112):599–601. doi: 10.1126/science.182.4112.599. [DOI] [PubMed] [Google Scholar]
  27. Pettigrew J. D., Nikara T., Bishop P. O. Responses to moving slits by single units in cat striate cortex. Exp Brain Res. 1968;6(4):373–390. doi: 10.1007/BF00233185. [DOI] [PubMed] [Google Scholar]
  28. Pettigrew J. D., Olson C., Hirsch H. V. Cortical effect of selective visual experience: degeneration or reorganization? Brain Res. 1973 Mar 15;51:345–351. doi: 10.1016/0006-8993(73)90387-9. [DOI] [PubMed] [Google Scholar]
  29. Pettigrew J. D. The effect of visual experience on the development of stimulus specificity by kitten cortical neurones. J Physiol. 1974 Feb;237(1):49–74. doi: 10.1113/jphysiol.1974.sp010469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Stryker M. P., Sherk H. Modification of cortical orientation selectivity in the cat by restricted visual experience: a reexamination. Science. 1975 Nov 28;190(4217):904–906. doi: 10.1126/science.1188372. [DOI] [PubMed] [Google Scholar]
  31. Tretter F., Cynader M., Singer W. Modification of direction selectivity of neurons in the visual cortex of kittens. Brain Res. 1975 Jan 24;84(1):143–149. doi: 10.1016/0006-8993(75)90808-2. [DOI] [PubMed] [Google Scholar]
  32. Van Sluyters R. C., Blakemore C. Experimental creation of unusual neuronal properties in visual cortex of kitten. Nature. 1973 Dec 21;246(5434):506–508. doi: 10.1038/246506a0. [DOI] [PubMed] [Google Scholar]
  33. Vital-Durand F., Jeannerod M. Maturation of the optokinetic response: genetic and environmental factors. Brain Res. 1974 May 17;71(2-3):249–257. doi: 10.1016/0006-8993(74)90968-8. [DOI] [PubMed] [Google Scholar]
  34. Vital-Durand F., Jeannerod M. Role of visual experience in the development of optokinetic response in kittens. Exp Brain Res. 1974;20(3):297–302. doi: 10.1007/BF00238319. [DOI] [PubMed] [Google Scholar]
  35. Wickelgren B. G., Sterling P. Influence of visual cortex on receptive fields in the superior colliculus of the cat. J Neurophysiol. 1969 Jan;32(1):16–23. doi: 10.1152/jn.1969.32.1.16. [DOI] [PubMed] [Google Scholar]
  36. Wiesel T. N., Hubel D. H. Comparison of the effects of unilateral and bilateral eye closure on cortical unit responses in kittens. J Neurophysiol. 1965 Nov;28(6):1029–1040. doi: 10.1152/jn.1965.28.6.1029. [DOI] [PubMed] [Google Scholar]
  37. Wyatt H. J., Daw N. W. Directionally sensitive ganglion cells in the rabbit retina: specificity for stimulus direction, size, and speed. J Neurophysiol. 1975 May;38(3):613–626. doi: 10.1152/jn.1975.38.3.613. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES