Abstract
1.The responses to glutamate and amino acid antagonists of cells in the cuneate nucleus of anaesthetized rats have been examined.2. 1-hydroxy-3-amino-pyrrolidone-2 (HA-966) and glutamic acid diethylester applied by micro-iontophoresis reduced glutamate excitation of the neurons. HA-966 WAS EFFECTIVE ON MORE CELLS THAN GLUTAMIC ACID DIETHYLESTER AND WAS MORE POTENT. HA-966 DID NOT AFFECT EXCITATORY RESPONSES TO ACETYLCHOLINE.3. Spike activity of cuneate cells was evoked by stimulating the cerebral cortex. Spikeswhich could be attributed to monosynaptic activation of the cells were studied. The pyramidal tract is the only corticofugal pathway known to be capable of short latency activation of dorsal column nucleus neurones.4. HA-966 reversibly blocked the evoked activity in twenty-eight (70%) of forty units in which monosynaptically evoked spikes were induced.5. The results raise the possibility that the neurotransmitter released by neurones of the pyramidal tract may be an excitatory amino acid.
Full text
PDF![187](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b25a/1309351/67db185e80b2/jphysiol00849-0216.png)
![188](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b25a/1309351/ed11a92188a2/jphysiol00849-0217.png)
![189](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b25a/1309351/d6ea8cf0edae/jphysiol00849-0218.png)
![190](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b25a/1309351/7c166cdaa6a2/jphysiol00849-0219.png)
![191](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b25a/1309351/f5224058d256/jphysiol00849-0220.png)
![192](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b25a/1309351/eb8d17f8d93d/jphysiol00849-0221.png)
![193](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b25a/1309351/cbb724d3f35b/jphysiol00849-0222.png)
![194](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b25a/1309351/205de992723f/jphysiol00849-0223.png)
![195](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b25a/1309351/c073231f042b/jphysiol00849-0224.png)
![196](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b25a/1309351/7e903005fc40/jphysiol00849-0225.png)
![197](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b25a/1309351/8501a1e9d570/jphysiol00849-0226.png)
![198](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b25a/1309351/3f7360a98d3e/jphysiol00849-0227.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bradford H. F., Thomas A. J. Metabolism of glucose and glutamate by synaptosomes from mammalian cerebral cortex. J Neurochem. 1969 Nov;16(11):1495–1504. doi: 10.1111/j.1471-4159.1969.tb09904.x. [DOI] [PubMed] [Google Scholar]
- CARLSSON A., FALCK B., HILLARP N. A. Cellular localization of brain monoamines. Acta Physiol Scand Suppl. 1962;56(196):1–28. [PubMed] [Google Scholar]
- Crawford J. M., Curtis D. R. Pharmacological studies on feline Betz cells. J Physiol. 1966 Sep;186(1):121–138. doi: 10.1113/jphysiol.1966.sp008024. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Curtis D. R., Johnston G. A., Game C. J., McCulloch R. M. Antagonism of neuronal excitation by 1-hydroxy-3-aminopyrrolidone-2. Brain Res. 1973 Jan 30;49(2):467–470. doi: 10.1016/0006-8993(73)90444-7. [DOI] [PubMed] [Google Scholar]
- Davies J., Watkins J. C. Antagonism of synaptic and amino acid induced excitation in the cuneate nucleus of the cat by HA-966. Neuropharmacology. 1973 Jul;12(7):637–640. doi: 10.1016/0028-3908(73)90116-0. [DOI] [PubMed] [Google Scholar]
- Davies J., Watkins J. C. Microelectrophoretic studies on the depressant action of HA-966 on chemically and synaptically excited neurones in the cat cerebral cortex and cuneate nucleus. Brain Res. 1973 Sep 14;59:311–322. doi: 10.1016/0006-8993(73)90269-2. [DOI] [PubMed] [Google Scholar]
- Duggan A. W., Johnston G. A. Glutamate and related amino acids in cat spinal roots, dorsal root ganglia and peripheral nerves. J Neurochem. 1970 Aug;17(8):1205–1208. doi: 10.1111/j.1471-4159.1970.tb03369.x. [DOI] [PubMed] [Google Scholar]
- Feldberg W., Vogt M. Acetylcholine synthesis in different regions of the central nervous system. J Physiol. 1948 Jun 25;107(3):372–381. doi: 10.1113/jphysiol.1948.sp004282. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Galindo A., Krnjević K., Schwartz S. Micro-iontophoretic studies on neurones in the cuneate nucleus. J Physiol. 1967 Sep;192(2):359–377. doi: 10.1113/jphysiol.1967.sp008305. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harris F., Jabbur S. J., Morse R. W., Towe A. L. Influence of the cerebral cortex on the cuneate nucleus of the monkey. Nature. 1965 Dec 18;208(5016):1215–1216. doi: 10.1038/2081215a0. [DOI] [PubMed] [Google Scholar]
- JABBUR S. J., TOWE A. L. Cortical excitation of neurons in dorsal column nuclei of cat, including an analysis of pathways. J Neurophysiol. 1961 Sep;24:499–509. doi: 10.1152/jn.1961.24.5.499. [DOI] [PubMed] [Google Scholar]
- Jasper H. H., Koyama I. Rate of release of amino acids from the cerebral cortex in the cat as affected by brainstem and thalamic stimulation. Can J Physiol Pharmacol. 1969 Oct;47(10):889–905. doi: 10.1139/y69-146. [DOI] [PubMed] [Google Scholar]
- Johnson J. L., Aprison M. H. The distribution of glutamic acid, a transmitter candidate, and other amino acids in the dorsal sensory neuron of the cat. Brain Res. 1970 Dec 1;24(2):285–292. doi: 10.1016/0006-8993(70)90107-1. [DOI] [PubMed] [Google Scholar]
- KOELLE G. B. The histochemical localization of cholinesterases in the central nervous system of the rat. J Comp Neurol. 1954 Feb;100(1):211–235. doi: 10.1002/cne.901000108. [DOI] [PubMed] [Google Scholar]
- KRNJEVIC K., PHILLIS J. W. Acetylcholine-sensitive cells in the cerebral cortex. J Physiol. 1963 Apr;166:296–327. doi: 10.1113/jphysiol.1963.sp007106. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KUYPERS H. G. An anatomical analysis of cortico-bulbar connexions to the pons and lower brain stem in the cat. J Anat. 1958 Apr;92(2):198–218. [PMC free article] [PubMed] [Google Scholar]
- LEVITT M., CARRERAS M., LIU C. N., CHAMBERS W. W. PYRAMIDAL AND EXTRAPYRAMIDAL MODULATION OF SOMATOSENSORY ACTIVITY IN GRACILE AND CUNEATE NUCLEI. Arch Ital Biol. 1964 Apr 18;102:197–229. [PubMed] [Google Scholar]
- Roberts P. J., Keen P., Mitchell J. F. The distribution and axonal transport of free amino acids and related compounds in the dorsal sensory neuron of the rat, as determined by the dansyl reaction. J Neurochem. 1973 Jul;21(1):199–209. doi: 10.1111/j.1471-4159.1973.tb04239.x. [DOI] [PubMed] [Google Scholar]
- SALMOIRAGHI G. C., STEINER F. A. Acetylcholine sensitivity of cat's medullary neurons. J Neurophysiol. 1963 Jul;26:581–597. doi: 10.1152/jn.1963.26.4.581. [DOI] [PubMed] [Google Scholar]
- Steiner F. A., Meyer M. Actions of L-glutamate, acetylcholine and dopamine on single neurons in the nuclei cuneatus and gracilis of the cat. Experientia. 1966 Jan 15;22(1):58–59. doi: 10.1007/BF01897773. [DOI] [PubMed] [Google Scholar]
- Stone T. W. Cholinergic mechanisms in the rat somatosensory cerebral cortex. J Physiol. 1972 Sep;225(2):485–499. doi: 10.1113/jphysiol.1972.sp009951. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stone T. W. Cortical pyramidal tract interneurones and their sensitivity to L-glutamic acid. J Physiol. 1973 Aug;233(1):211–225. doi: 10.1113/jphysiol.1973.sp010306. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stone T. W. Cortical responses to pyramidal tract stimulation in the rat. Exp Neurol. 1972 Jun;35(3):492–502. doi: 10.1016/0014-4886(72)90119-7. [DOI] [PubMed] [Google Scholar]
- WALBERG F. Corticofugal fibres to the nuclei of the dorsal columns; an experimental study in the cat. Brain. 1957 Jun;80(2):273–287. doi: 10.1093/brain/80.2.273. [DOI] [PubMed] [Google Scholar]
- Wiesendanger M. The pyramidal tract: recent investigations on its morphology and function. Ergeb Physiol. 1969;61:72–136. doi: 10.1007/BFb0111447. [DOI] [PubMed] [Google Scholar]