Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1975 Mar;246(1):181–196. doi: 10.1113/jphysiol.1975.sp010885

An experimental method of identifying and quantifying the active transfer electrogenic component from the diffusive component during sugar absorption measured in vivo.

E S Debnam, R J Levin
PMCID: PMC1309409  PMID: 1133782

Abstract

1. The kinetics of absorption of glucose, galactose and alpha-methyl glucoside have been measured in rat jejunum in vivo using a chemical method and a new electrical technique. 2. Sugar absorption estimated by chemical methods exhibited two components. One component was phlorrhizin-sensitive, saturable and generated electrical potential differences (electrogenic active component) while the other was phlorrhizin-insensitive, non-saturable and did not generate electrical potentials (diffusive component). 3. The diffusive component of the actively transported sugars was indentical to the absorption behaviour of sorbose, a hexose that is not actively transferred. 4. A method for correcting the data obtained from chemical absorption studies for the diffusive component was developed. The corrected, operational kinetic constants for 'apparent Km' obtained by this method were not significantly different to values obtained electrically. The identity between the values obtained by both methods supports the concept that they represent a measure of the same rate-limiting step in the absorption process. 5. The application and significance of the techniques is discussed in relation to the clinical assessment of intestinal sugar absorption.

Full text

PDF
181

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANNEGERS J. H. INTESTINAL ABSORPTION OF HEXOSES IN THE DOG. Am J Physiol. 1964 May;206:1095–1098. doi: 10.1152/ajplegacy.1964.206.5.1095. [DOI] [PubMed] [Google Scholar]
  2. BARTON-WRIGHT E. C., ELLIOTT W. A. THE PANTOTHENIC ACID METABOLISM OF RHEUMATOID ARTHRITIS. Lancet. 1963 Oct 26;2(7313):862–863. doi: 10.1016/s0140-6736(63)92748-x. [DOI] [PubMed] [Google Scholar]
  3. BORGSTROM B., DAHLQVIST A., LUNDH G., SJOVALL J. Studies of intestinal digestion and absorption in the human. J Clin Invest. 1957 Oct;36(10):1521–1536. doi: 10.1172/JCI103549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. COLE A. S. Soluble material in the gastrointestinal tract of rats under normal feeding condition. Nature. 1961 Jul 29;191:502–503. doi: 10.1038/191502a0. [DOI] [PubMed] [Google Scholar]
  5. Caspary W. F. Effect of insulin and experimental diabetes mellitus on the digestive-absorptive function of the small intestine. Digestion. 1973 Oct;9(3):248–263. doi: 10.1159/000197452. [DOI] [PubMed] [Google Scholar]
  6. Csáky T. Z., Ho P. M. The effect of potassium on the intestinal transport of glucose. J Gen Physiol. 1966 Sep;50(1):113–128. doi: 10.1085/jgp.50.1.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Curran P. F. Active transport of amino acids and sugars. Arch Intern Med. 1972 Feb;129(2):258–269. [PubMed] [Google Scholar]
  8. DOWD J. E., RIGGS D. S. A COMPARISON OF ESTIMATES OF MICHAELIS-MENTEN KINETIC CONSTANTS FROM VARIOUS LINEAR TRANSFORMATIONS. J Biol Chem. 1965 Feb;240:863–869. [PubMed] [Google Scholar]
  9. Debnam E. S., Levin R. J. Assessment of the effects of starvation and of semi-starvation on the operational kinetic parameters of the active transfer of hexoses measured in vivo. J Physiol. 1973 May;231(1):21P–23P. [PubMed] [Google Scholar]
  10. Dietschy J. M. Difficulties in determining valid rate constants for transport and metabolic processes. Gastroenterology. 1970 Jun;58(6):863–874. [PubMed] [Google Scholar]
  11. Dixon M. The graphical determination of K m and K i . Biochem J. 1972 Aug;129(1):197–202. doi: 10.1042/bj1290197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Elbrink J., Bihler I. Characteristics of the membrane transport of sugars in the lens of the eye. Biochim Biophys Acta. 1972 Sep 1;282(1):337–351. doi: 10.1016/0005-2736(72)90339-2. [DOI] [PubMed] [Google Scholar]
  13. Förster H., Menzel B. Zur Bestimmung der Michaelis-Konstanten für die intestinale Glucoseresorption bei Untersuchungen in vivo. Z Ernahrungswiss. 1972 Mar;11(1):24–39. doi: 10.1007/BF02019581. [DOI] [PubMed] [Google Scholar]
  14. HOFSTEE B. H. Non-inverted versus inverted plots in enzyme kinetics. Nature. 1959 Oct 24;184:1296–1298. doi: 10.1038/1841296b0. [DOI] [PubMed] [Google Scholar]
  15. HOLDSWORTH C. D., DAWSON A. M. THE ABSORPTION OF MONOSACCHARIDES IN MAN. Clin Sci. 1964 Dec;27:371–379. [PubMed] [Google Scholar]
  16. Honegger P., Gershon E. Further evidence for the multiplicity of carriers for free glucalogues in hamster small intestine. Biochim Biophys Acta. 1974 May 30;352(1):127–134. doi: 10.1016/0005-2736(74)90185-0. [DOI] [PubMed] [Google Scholar]
  17. Kimmich G. A. Coupling between Na+ and sugar transport in small intestine. Biochim Biophys Acta. 1973 Apr 3;300(1):31–78. doi: 10.1016/0304-4157(73)90011-7. [DOI] [PubMed] [Google Scholar]
  18. Kohn P. G., Smyth D. H., Wright E. M. Effects of amino acids, dipeptides and disaccharides on the electric potential across rat small intestine. J Physiol. 1968 Jun;196(3):723–746. doi: 10.1113/jphysiol.1968.sp008533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Leibowitz M. J., Merker P. C. The effect of nitrogen mustard intoxication on glucose absorption from the small intestine of the rat. Gut. 1971 Feb;12(2):123–125. doi: 10.1136/gut.12.2.123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Levin R. J. The intestinal absorption of some essential and non-essential amino acids in fed and fasting rats. Life Sci. 1970 Jan 22;9(2):61–68. doi: 10.1016/0024-3205(70)90245-6. [DOI] [PubMed] [Google Scholar]
  21. Levin R. J. Transmural potentials across the small and large intestine of the bullfrog, Rana catesbeiana. Proc Soc Exp Biol Med. 1966 Apr;121(4):1033–1038. doi: 10.3181/00379727-121-30957. [DOI] [PubMed] [Google Scholar]
  22. Lyon I., Crane R. K. Studies on transmural potentials in vitro in relation to intestinal absorption. I. Apparent Michaelis constants for Na+dependent sugar transport. Biochim Biophys Acta. 1966 Feb 7;112(2):278–291. doi: 10.1016/0926-6585(66)90327-x. [DOI] [PubMed] [Google Scholar]
  23. MANOME S., KURIAKI K. Effect of insulin, phlorizin and some metabolic inhibitors on the glucose absorption from the intestine. Arch Int Pharmacodyn Ther. 1961 Feb 1;130:187–194. [PubMed] [Google Scholar]
  24. Modigliani R., Bernier J. J. Absorption of glucose, sodium, and water by the human jejunum studied by intestinal perfusion with a proximal occluding balloon and at variable flow rates. Gut. 1971 Mar;12(3):184–193. doi: 10.1136/gut.12.3.184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Modigliani R., Rambaud J. C., Bernier J. J. The method of intraluminal perfusion of the human small intestine. I. Principle and technique. Digestion. 1973;9(2):176–192. doi: 10.1159/000197443. [DOI] [PubMed] [Google Scholar]
  26. Murer H., Hopfer U. Demonstration of electrogenic Na+-dependent D-glucose transport in intestinal brush border membranes. Proc Natl Acad Sci U S A. 1974 Feb;71(2):484–488. doi: 10.1073/pnas.71.2.484. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Read N. W., Holdsworth C. D., Levin R. J. Electrical measurement of intestinal absorption of glucose in man. Lancet. 1974 Sep 14;2(7881):624–627. doi: 10.1016/s0140-6736(74)91946-1. [DOI] [PubMed] [Google Scholar]
  28. Rider A. K., Schedl H. P., Nokes G., Shining S. Small intestinal glucose transport. Proximal-distal kinetic gradients. J Gen Physiol. 1967 May;50(5):1173–1182. doi: 10.1085/jgp.50.5.1173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Schultz S. G., Curran P. F. Coupled transport of sodium and organic solutes. Physiol Rev. 1970 Oct;50(4):637–718. doi: 10.1152/physrev.1970.50.4.637. [DOI] [PubMed] [Google Scholar]
  30. Semenza G., Mülhaupt E. Studies on intestinal sucrase and sugar transport. VII. A method for measuring intestinal uptake. The absorption of the anomeric forms of some monosaccharides. Biochim Biophys Acta. 1969 Jan 28;173(1):104–112. doi: 10.1016/0005-2736(69)90041-8. [DOI] [PubMed] [Google Scholar]
  31. Winne D. Unstirred layer, source of biased Michaelis constant in membrane transport. Biochim Biophys Acta. 1973 Feb 27;298(1):27–31. doi: 10.1016/0005-2736(73)90005-9. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES