Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1975 Jun;248(1):15–33. doi: 10.1113/jphysiol.1975.sp010960

Plasma catecholamines in foetal and adult sheep.

C T Jones, R O Robinson
PMCID: PMC1309505  PMID: 1151803

Abstract

1. Foetal and maternal plasma catecholamine concentrations were measured during and after hypoxia (mean maternal Pa,02 44mmHg) in chronically catheterized sheep, 118-141 days pregnant. 2. In most foetuses the initial plasma catecholamines were smaller than 0.07 ng/ml. During hypoxia plasma adrenaline and noradrenaline always rose; there was a rise in arterial pressure and a fall in heart rate. 3. The initial catecholamine concentration in the ewes was smaller than 0.05-2.3 ng/ml. During hypoxia there was no consistent change; the maternal plasma concentrations were less than the foetal. 4. Infusion of adrenaline at 0.3 mug kg(-1) min(-1) to the ewe resulted in plasma catecholamine concentrations higher than those observed during hypoxia. There was a rise in heart rate but no consistent change in arterial pressure. 5. Infusion of adrenaline 0.4 mug kg(-1) min(-1) into the foetal jugular vein caused a rise in plasma concentration similar to that seen during hypoxia. There was a rise in heart rate but no significant change in arterial pressure. 6. The half-life of adrenaline and of noradrenaline in the maternal and foetal circulation was 0.25-1 min. There was no evidence of transfer of labelled catecholamine across the placenta.

Full text

PDF
15

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adamsons K., Mueller-Heubach E., Myers R. E. Production of fetal asphyxia in the rhesus monkey by administration of catecholamines to the mother. Am J Obstet Gynecol. 1971 Jan 15;109(2):248–262. doi: 10.1016/0002-9378(71)90873-8. [DOI] [PubMed] [Google Scholar]
  2. BEARD R. W. Response of human foetal heart and maternal circulation to adrenaline and noradrenaline. Br Med J. 1962 Feb 17;1(5276):443–446. doi: 10.1136/bmj.1.5276.443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BORN G. V., DAWES G. S., MOTT J. C. Oxygen lack and autonomic nervous control of the foetal circulation in the lamb. J Physiol. 1956 Oct 29;134(1):149–166. doi: 10.1113/jphysiol.1956.sp005631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bain W. A., Gaunt W. E., Suffolk S. F. Observations on the inactivation of adrenaline by blood and tissues in vitro. J Physiol. 1937 Dec 14;91(3):233–253. doi: 10.1113/jphysiol.1937.sp003555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Broughton Pipkin F., Kirkpatrick S. M. The blood volumes of fetal and newborn sheep. Q J Exp Physiol Cogn Med Sci. 1973 Apr;58(2):181–188. [PubMed] [Google Scholar]
  6. Brundin T. Studies on the preaortal paraganglia of newborn rabbits. Acta Physiol Scand Suppl. 1966;290:1–54. [PubMed] [Google Scholar]
  7. CASSIN S., DAWES G. S., ROSS B. B. PULMONARY BLOOD FLOW AND VASCULAR RESISTANCE IN IMMATURE FOETAL LAMBS. J Physiol. 1964 May;171:80–89. doi: 10.1113/jphysiol.1964.sp007362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. COMLINE R. S., SILVER I. A., SILVER M. FACTORS RESPONSIBLE FOR THE STIMULATION OF THE ADRENAL MEDULLA DURING ASPHYXIA IN THE FOETAL LAMB. J Physiol. 1965 May;178:211–238. doi: 10.1113/jphysiol.1965.sp007624. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Campbell A. G., Dawes G. S., Fishman A. P., Hyman A. I. Regional redistribution of blood flow in the mature fetal lamb. Circ Res. 1967 Aug;21(2):229–235. doi: 10.1161/01.res.21.2.229. [DOI] [PubMed] [Google Scholar]
  10. Christopherson R. J., Webster A. J. Changes during eating in oxygen consumption, cardiac function and body fluids of sheep. J Physiol. 1972 Mar;221(2):441–457. doi: 10.1113/jphysiol.1972.sp009760. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. DAWES G. S., MOTT J. C., RENNICK B. R. Some effects of adrenaline, noradrenaline and acetylcholine on the foetal circulation in the lamb. J Physiol. 1956 Oct 29;134(1):139–148. doi: 10.1113/jphysiol.1956.sp005630. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dawes G. S., Duncan S. L., Lewis B. V., Merlet C. L., Owen-Thomas J. B., Reeves J. T. Hypoxaemia and aortic chemoreceptor function in foetal lambs. J Physiol. 1969 Mar;201(1):105–116. doi: 10.1113/jphysiol.1969.sp008745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Dawes G. S., Fox H. E., Leduc B. M., Liggins G. C., Richards R. T. Respiratory movements and rapid eye movement sleep in the foetal lamb. J Physiol. 1972 Jan;220(1):119–143. doi: 10.1113/jphysiol.1972.sp009698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Dawes G. S., Lewis B. V., Milligan J. E., Roach M. R., Talner N. S. Vasomotor responses in the hind limbs of foetal and new-born lambs to asphyxia and aortic chemoreceptor stimulation. J Physiol. 1968 Mar;195(1):55–81. doi: 10.1113/jphysiol.1968.sp008446. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Dunne J. T., Milligan J. E., Thomas B. W. Control of renal circulation in the fetus. Am J Obstet Gynecol. 1972 Feb 1;112(3):323–329. doi: 10.1016/0002-9378(72)90471-1. [DOI] [PubMed] [Google Scholar]
  16. Engelman K., Portnoy B. A sensitive double-isotope derivative assay for norepinephrine and epinephrine. Normal resting human plasma levels. Circ Res. 1970 Jan;26(1):53–57. doi: 10.1161/01.res.26.1.53. [DOI] [PubMed] [Google Scholar]
  17. Epps H. M. The development of amine oxidase activity by human tissues after birth. Biochem J. 1945;39(1):37–42. doi: 10.1042/bj0390037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Friedman W. F., Pool P. E., Jacobowitz D., Seagren S. C., Braunwald E. Sympathetic innervation of the developing rabbit heart. Biochemical and histochemical comparisons of fetal, neonatal, and adult myocardium. Circ Res. 1968 Jul;23(1):25–32. doi: 10.1161/01.res.23.1.25. [DOI] [PubMed] [Google Scholar]
  19. GLOWINSKI J., AXELROD J., KOPIN I. J., WURTMAN R. J. PHYSIOLOGICAL DISPOSITION OF H3-NOREPINEPHRINE IN THE DEVELOPING RAT. J Pharmacol Exp Ther. 1964 Oct;146:48–53. [PubMed] [Google Scholar]
  20. Goodwin J. W., Milligan J. E., Thomas B., Taylor J. R. The effect of aortic chemoreceptor stimulation on cardiac output and umbilical blood flow in the fetal lamb. Am J Obstet Gynecol. 1973 May 1;116(1):48–56. doi: 10.1016/0002-9378(73)90882-x. [DOI] [PubMed] [Google Scholar]
  21. Goodwin J. W. The impact of the umbilical circulation on the fetus. Am J Obstet Gynecol. 1968 Feb 15;100(4):461–471. doi: 10.1016/s0002-9378(15)33479-7. [DOI] [PubMed] [Google Scholar]
  22. HALL E. K. Acetylcholine and epinephrine effects on the embryonic rat heart. J Cell Physiol. 1957 Apr;49(2):187–200. doi: 10.1002/jcp.1030490203. [DOI] [PubMed] [Google Scholar]
  23. HERTTING G., AXELROD J. Fate of tritiated noradrenaline at the sympathetic nerve-endings. Nature. 1961 Oct 14;192:172–173. doi: 10.1038/192172a0. [DOI] [PubMed] [Google Scholar]
  24. Häggendal J. Newer developments in catecholamine assay. Pharmacol Rev. 1966 Mar;18(1):325–329. [PubMed] [Google Scholar]
  25. Ignarro L. J., Shideman F. E. Catechol-O-methyl transferase and monoamine oxidase activities in the heart and liver of the embryonic and developing chick. J Pharmacol Exp Ther. 1968 Jan;159(1):29–37. [PubMed] [Google Scholar]
  26. Iversen L. L., De Champlain J., Glowinski J., Axelrod J. Uptake, storage and metabolism of norepinephrine in tissues of the developing rat. J Pharmacol Exp Ther. 1967 Sep;157(3):509–516. [PubMed] [Google Scholar]
  27. Iversen L. L., Jarrott B. Modification of an enzyme radiochemical assay procedure for noradrenaline. Biochem Pharmacol. 1970 May;19(5):1841–1843. doi: 10.1016/0006-2952(70)90182-6. [DOI] [PubMed] [Google Scholar]
  28. Joelsson I., Barton M. D., Daniel S., James S., Adamsons K. The response of the unanesthetized sheep fetus to sympathomimetic amines and adrenergic blocking agents. Am J Obstet Gynecol. 1972 Sep 1;114(1):43–50. doi: 10.1016/0002-9378(72)90287-6. [DOI] [PubMed] [Google Scholar]
  29. LUND A. Fluorimetric determination of adrenaline in blood; a new sensitive and specific method. Acta Pharmacol Toxicol (Copenh) 1949 Oct;5(3):231–247. doi: 10.1111/j.1600-0773.1949.tb03389.x. [DOI] [PubMed] [Google Scholar]
  30. LUSCHINSKY H. L., SINGHER H. O. Identification and assay of monamine oxidase in the human placenta. Arch Biochem. 1948 Oct;19(1):95–107. [PubMed] [Google Scholar]
  31. Ladner C., Brinkman C. R., 3rd, Weston P., Assali N. S. Dynamics of uterine circulation in pregnant and nonpregnant sheep. Am J Physiol. 1970 Jan;218(1):257–263. doi: 10.1152/ajplegacy.1970.218.1.257. [DOI] [PubMed] [Google Scholar]
  32. McCullough H. Semi-automated method for the differential determination of plasma catecholamines. J Clin Pathol. 1968 Nov;21(6):759–763. doi: 10.1136/jcp.21.6.759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Mirkin B. L. Ontogenesis of the adrenergic nervous system: functional and pharmacologic implications. Fed Proc. 1972 Jan-Feb;31(1):65–73. [PubMed] [Google Scholar]
  34. Passon P. G., Peuler J. D. A simplified radiometric assay for plasma norepinephrine and epinephrine. Anal Biochem. 1973 Feb;51(2):618–631. doi: 10.1016/0003-2697(73)90517-4. [DOI] [PubMed] [Google Scholar]
  35. Prange A. J., Jr, White J. E., Lipton M. A., Kinkead A. M. Influence of age on monoamine oxidase and catechol-O-methyltransferase in rat tissues. Life Sci. 1967 Mar 15;6(6):581–586. doi: 10.1016/0024-3205(67)90092-6. [DOI] [PubMed] [Google Scholar]
  36. Renzini V., Brunori C. A., Valori C. A sensitive and specific fluorimetric method for the determination of noradrenalin and adrenalin in human plasma. Clin Chim Acta. 1970 Dec;30(3):587–594. doi: 10.1016/0009-8981(70)90249-4. [DOI] [PubMed] [Google Scholar]
  37. SMITH R. W., MORRIS J. A., ASSALI N. S. EFFECTS OF CHEMICAL MEDIATORS ON THE PULMONARY AND DUCTUS ARTERIOSUS CIRCULATION IN THE FETAL LAMB. Am J Obstet Gynecol. 1964 May 15;89:252–260. doi: 10.1016/0002-9378(64)90718-5. [DOI] [PubMed] [Google Scholar]
  38. Shah P. P., Tee A. R., English P. D., Redman B. T., Bunyan J. The identification of a lipid-mobilizing factor from sheep midbrain. Biochem J. 1972 Nov;130(2):467–473. doi: 10.1042/bj1300467. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES