Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1975 Jul;248(3):555–578. doi: 10.1113/jphysiol.1975.sp010988

Spectral correlates of a quasi-stable depolarization in barnacle photoreceptor following red light.

H M Brown, M C Cornwall
PMCID: PMC1309539  PMID: 1151837

Abstract

1. Illumination of B. eburneus photoreceptors with intense red light produces a membrane depolarization that persists in darkness. This quasistable depolarization (latch-up) can be terminated with green light. The phenomenon was investigated with electrophysiological, spectrochemical, and microspectrophotometric techniques. 2. Latch-up was associated with a stable inward current in cells with the membrane potential voltage-clamped at the resting potential in darkness. The stable current could only be elicited at wave-lengths greater than 580 nm. 3. Light-induced current (LIC) was measured at various wave-lengths in dark-adapted photoreceptors with the membrane voltage-clamped to the resting potential. The minimum number of photons required to elicit a fixed amount of LIC occurred at 540 nm, indicating that the photoreceptor is maximally sensitive to this wave-length of light. The photoreceptor was also sensitive to wave-lengths in the near-U.V. region of the spectrum (380-420 nm). 4. Steady red adapting light reduced the magnitude of the LIC uniformly at all wave-lengths except in the near-U.V. region of the spectrum; sensitivity was reduced less in this region. 5. The spectrum for termination of the stable inward current following or during red light was shifted to the blue (peak about 510 nm) compared to the peak for LIC (peak about 540 nm). 6. Absorbance of single cells prepared under bright, red light decreased maximally at 480 nm following exposure to wave-lengths of light longer than 540 nm. 7. A pigment extract of 1000 barnacle ocelli prepared under dim, red light had a maximum absorbance change at 480 nm when bleached with blue-gree light. 8. There was no evidence in the latter two experiments of photointerconversion of pigments with absorbance maxima at 480 and 540 nm. Rather, the maximum absorption of the bleaching products seemed to occur at wave-lengths shorter than 420 nm. 9. Since latch-up induction occurs at wave-lengths longer than 580 nm, it may depend on the 540 pigment or on an undetected red absorbing pigment. 10. A photolabile pigment at 480 nm correlated most closely with termination of the stable inward current associated with latch-up.

Full text

PDF
555

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brown H. M., Cornwall M. C. Ionic mechanism of a quasi-stable depolarization in barnacle photoreceptor following red light. J Physiol. 1975 Jul;248(3):579–593. doi: 10.1113/jphysiol.1975.sp010989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brown H. M., Hagiwara S., Koike H., Meech R. M. Membrane properties of a barnacle photoreceptor examined by the voltage clamp technique. J Physiol. 1970 Jun;208(2):385–413. doi: 10.1113/jphysiol.1970.sp009127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. DARTNALL H. J. A. The interpretation of spectral sensitivity curves. Br Med Bull. 1953;9(1):24–30. doi: 10.1093/oxfordjournals.bmb.a074302. [DOI] [PubMed] [Google Scholar]
  4. Fein A., DeVoe R. D. Adaptation in the ventral eye of Limulus is functionally independent of the photochemical cycle, membrane potential, and membrane resistance. J Gen Physiol. 1973 Mar;61(3):273–289. doi: 10.1085/jgp.61.3.273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. HOYLE G., SMYTH T., Jr NEUROMUSCULAR PHYSIOLOGY OF GIANT MUSCLE FIBERS OF A BARNACLE, BALANUS NUBILUS DARWIN. Comp Biochem Physiol. 1963 Dec;10:291–314. doi: 10.1016/0010-406x(63)90229-9. [DOI] [PubMed] [Google Scholar]
  6. Hamdorf K., Schwemer J., Gogala M. Insect visual pigment sensitive to ultraviolet light. Nature. 1971 Jun 18;231(5303):458–459. doi: 10.1038/231458a0. [DOI] [PubMed] [Google Scholar]
  7. Hillman P., Dodge F. A., Hochstein S., Knight B. W., Minke B. Rapid dark recovery of the invertebrate early receptor potential. J Gen Physiol. 1973 Jul;62(1):77–86. doi: 10.1085/jgp.62.1.77. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hillman P., Hochstein S., Minke B. A visual pigment with two physiologically active stable states. Science. 1972 Mar 31;175(4029):1486–1488. doi: 10.1126/science.175.4029.1486. [DOI] [PubMed] [Google Scholar]
  9. Hochstein S., Minke B., Hillman P. Antagonistic components of the late receptor potential in the barnacle photoreceptor arising from different stages of the pigment process. J Gen Physiol. 1973 Jul;62(1):105–128. doi: 10.1085/jgp.62.1.105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Koike H., Brown H. M., Hagiwara S. Hyperpolarization of a barnacle photoreceptor membrane following illumination. J Gen Physiol. 1971 Jun;57(6):723–737. doi: 10.1085/jgp.57.6.723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Liebman P. A., Entine G. Sensitive low-light-level microspectrophotometer: detection of photosensitive pigments of retinal cones. J Opt Soc Am. 1964 Dec;54(12):1451–1459. doi: 10.1364/josa.54.001451. [DOI] [PubMed] [Google Scholar]
  12. Minke B., Hochstein S., Hillman P. Early receptor potential evidence for the existence of two thermally stable states in the barnacle visual pigment. J Gen Physiol. 1973 Jul;62(1):87–104. doi: 10.1085/jgp.62.1.87. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Minke B., Hochstein S., Hillman P. Letter: Antagonistic process as source of visible-light suppression of afterpotential in Limulus UV photoreceptors. J Gen Physiol. 1973 Dec;62(6):787–791. doi: 10.1085/jgp.62.6.787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Murray G. C. Intracellular absorption difference spectrum of Limulus extra-ocular photolabile pigment. Science. 1966 Dec 2;154(3753):1182–1183. doi: 10.1126/science.154.3753.1182. [DOI] [PubMed] [Google Scholar]
  15. Nolte J., Brown J. E. Electrophysiological properties of cells in the median ocellus of Limulus. J Gen Physiol. 1972 Feb;59(2):167–185. doi: 10.1085/jgp.59.2.167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Nolte J., Brown J. E., Smith T. G., Jr A hyperpolarizing component of the receptor potential in the median ocellus of Limulus. Science. 1968 Nov 8;162(3854):677–679. doi: 10.1126/science.162.3854.677. [DOI] [PubMed] [Google Scholar]
  17. Nolte J., Brown J. E. The spectral sensitivities of single cells in the median ocellus of Limulus. J Gen Physiol. 1969 Nov;54(5):636–649. doi: 10.1085/jgp.54.5.636. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Nolte J., Brown J. E. The spectral sensitivities of single receptor cells in the lateral, median, and ventral eyes of normal and white-eyed Limulus. J Gen Physiol. 1970 Jun;55(6):787–801. doi: 10.1085/jgp.55.6.787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Nolte J., Brown J. E. Ultraviolet-induced sensitivity to visible light in ultraviolet receptors of Limulus. J Gen Physiol. 1972 Feb;59(2):186–200. doi: 10.1085/jgp.59.2.186. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Shaw S. R. Decremental conduction of the visual signal in barnacle lateral eye. J Physiol. 1972 Jan;220(1):145–175. doi: 10.1113/jphysiol.1972.sp009699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Stratten W. P., Ogden T. E. Spectral sensitivity of the barnacle, Balanus amphitrite. J Gen Physiol. 1971 Apr;57(4):435–447. doi: 10.1085/jgp.57.4.435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Wald G., Seldin E. B. Spectral sensitivity of the common prawn, Palaemonetes vulgaris. J Gen Physiol. 1968 May;51(5):694–700. doi: 10.1085/jgp.51.5.694. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES