Abstract
1. Contrast sensitivity functions of isolated colour mechanisms were measured at spatial frequencies from 0-2 to 32 c/deg. The contrast sensitivity vs. spatial-frequency functions of the red (pi5) and green (pi4) mechanisms are similar, while the blue (pi3) mechanism has lower absolute sensitivity and lower resolving power. Isolation of a single mechanism never increases its maximum sensitivity. 2. The shape of the contrast sensitivity function of a colour mechanism is established within the mechanism. Little if any inhibitory interaction takes place among colour mechanisms. 3. Differences that have been reported between the sensitivities of the red and green mechanisms, as well as the apparent "supersensitivity" of the isolated green mechanism, may be artifacts that result from the extrapolation procedures that were used to estimate the absolute sensitivities of the colour mechanisms.
Full text
PDF













Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BEDFORD R. E., WYSZECKI G. Axial chromatic aberration of the human eye. J Opt Soc Am. 1957 Jun;47(6):564–565. doi: 10.1364/josa.47.0564_1. [DOI] [PubMed] [Google Scholar]
- Brindley G. S., Du Croz J. J., Rushton W. A. The flicker fusion frequency of the blue-sensitive mechanism of colour vision. J Physiol. 1966 Mar;183(2):497–500. doi: 10.1113/jphysiol.1966.sp007879. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Campbell F. W., Robson J. G. Application of Fourier analysis to the visibility of gratings. J Physiol. 1968 Aug;197(3):551–566. doi: 10.1113/jphysiol.1968.sp008574. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cavonius C. R., Hilz R. Invariance of visual receptive-field size and visual acuity with viewing distance. J Opt Soc Am. 1973 Aug;63(8):929–933. doi: 10.1364/josa.63.000929. [DOI] [PubMed] [Google Scholar]
- Estévez O., Spekreuse H. A spectral compensation method for determining the flicker characteristics of the human colour mechanisms. Vision Res. 1974 Sep;14(9):823–830. doi: 10.1016/0042-6989(74)90147-3. [DOI] [PubMed] [Google Scholar]
- Green D. G. The contrast sensitivity of the colour mechanisms of the human eye. J Physiol. 1968 May;196(2):415–429. doi: 10.1113/jphysiol.1968.sp008515. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hilz R., Cavonius C. R. Wavelength discrimination measured with square-wave gratings. J Opt Soc Am. 1970 Feb;60(2):273–277. doi: 10.1364/josa.60.000273. [DOI] [PubMed] [Google Scholar]
- Kelley D. H. Spatio-temporal frequency chracteristics of color-vision mechanisms. J Opt Soc Am. 1974 Jul;64(7):983–990. doi: 10.1364/josa.64.000983. [DOI] [PubMed] [Google Scholar]
- Kelly D. H. Lateral inhibition in human colour mechanisms. J Physiol. 1973 Jan;228(1):55–72. doi: 10.1113/jphysiol.1973.sp010072. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rushton W. A., Powell D. S., White K. D. Exchange thresholds in dichromats. Vision Res. 1973 Nov;13(11):1993–2002. doi: 10.1016/0042-6989(73)90177-6. [DOI] [PubMed] [Google Scholar]
- WALD G. THE RECEPTORS OF HUMAN COLOR VISION. Science. 1964 Sep 4;145(3636):1007–1016. doi: 10.1126/science.145.3636.1007. [DOI] [PubMed] [Google Scholar]
- van der Horst G. J., de Weert C. M., Bouman M. A. Transfer of spatial chromaticity-contrast at threshold in the human eye. J Opt Soc Am. 1967 Oct;57(10):1260–1266. doi: 10.1364/josa.57.001260. [DOI] [PubMed] [Google Scholar]