Abstract
1. The soma of cell A in Helix aspersa produced action potentials in sodium-free or calcium-free saline, but not in saline with neither sodium nor calcium. 2. The axon had a sodium-dependent action potential. 3. Tetrodotoxin (5 x 10(-6) M) had no effect on the overshoot except at low external divalent ion concentrations. 4. The action potential in sodium-free saline was blocked by cobalt. 5. The slope of action potential overshoot against sodium concentration in the presence of 10 mM calcium was 10.5 mV/tenfold change. That of overshoot against calcium concentration in the presence of 75 mM sodium was 22 mV/tenfold change. 6. In sodium-free saline the slope of overshoot versus calcium concentration was 27 mV/tenfold change. 7. It is concluded that calcium is an important charge carrier in the action potential of cell A.
Full text
PDF![241](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/858e/1309572/dd2d32b402a5/jphysiol00891-0060.png)
![242](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/858e/1309572/babaef98ba9c/jphysiol00891-0061.png)
![243](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/858e/1309572/ceb3e38ac592/jphysiol00891-0062.png)
![244](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/858e/1309572/849a4be91162/jphysiol00891-0063.png)
![245](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/858e/1309572/6f06eeabcd2a/jphysiol00891-0064.png)
![246](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/858e/1309572/edad8df1229c/jphysiol00891-0065.png)
![247](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/858e/1309572/7127aaad837a/jphysiol00891-0066.png)
![248](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/858e/1309572/2ae69dbf1210/jphysiol00891-0067.png)
![249](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/858e/1309572/5cd9eb8ed9d3/jphysiol00891-0068.png)
![250](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/858e/1309572/e11e5878b18f/jphysiol00891-0069.png)
![251](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/858e/1309572/bac382b05098/jphysiol00891-0070.png)
![252](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/858e/1309572/9cbfccaf826b/jphysiol00891-0071.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baker P. F., Hodgkin A. L., Ridgway E. B. Depolarization and calcium entry in squid giant axons. J Physiol. 1971 Nov;218(3):709–755. doi: 10.1113/jphysiol.1971.sp009641. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baker P. F., Meves H., Ridgway E. B. Effects of manganese and other agents on the calcium uptake that follows depolarization of squid axons. J Physiol. 1973 Jun;231(3):511–526. doi: 10.1113/jphysiol.1973.sp010246. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brading A., Bülbring E., Tomita T. The effect of sodium and calcium on the action potential of the smooth muscle of the guinea-pig taenia coli. J Physiol. 1969 Feb;200(3):637–654. doi: 10.1113/jphysiol.1969.sp008713. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Colquhoun D., Henderson R., Ritchie J. M. The binding of labelled tetrodotoxin to non-myelinated nerve fibres. J Physiol. 1972 Dec;227(1):95–126. doi: 10.1113/jphysiol.1972.sp010022. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DEL CASTILLO J., KATZ B. The effect of magnesium on the activity of motor nerve endings. J Physiol. 1954 Jun 28;124(3):553–559. doi: 10.1113/jphysiol.1954.sp005128. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FATT P., GINSBORG B. L. The ionic requirements for the production of action potentials in crustacean muscle fibres. J Physiol. 1958 Aug 6;142(3):516–543. doi: 10.1113/jphysiol.1958.sp006034. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Geduldig D., Gruener R. Voltage clamp of the Aplysia giant neurone: early sodium and calcium currents. J Physiol. 1970 Nov;211(1):217–244. doi: 10.1113/jphysiol.1970.sp009276. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Geduldig D., Junge D. Sodium and calcium components of action potentials in the Aplysia giant neurone. J Physiol. 1968 Dec;199(2):347–365. doi: 10.1113/jphysiol.1968.sp008657. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldman D. E. POTENTIAL, IMPEDANCE, AND RECTIFICATION IN MEMBRANES. J Gen Physiol. 1943 Sep 20;27(1):37–60. doi: 10.1085/jgp.27.1.37. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HAGIWARA S., CHICHIBU S., NAKA K. I. THE EFFECTS OF VARIOUS IONS ON RESTING AND SPIKE POTENTIALS OF BARNACLE MUSCLE FIBERS. J Gen Physiol. 1964 Sep;48:163–179. doi: 10.1085/jgp.48.1.163. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hagiwara S., Takahashi K. Surface density of calcium ions and calcium spikes in the barnacle muscle fiber membrane. J Gen Physiol. 1967 Jan;50(3):583–601. doi: 10.1085/jgp.50.3.583. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hille B. Charges and potentials at the nerve surface. Divalent ions and pH. J Gen Physiol. 1968 Feb;51(2):221–236. doi: 10.1085/jgp.51.2.221. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kado R. T. Aplysia giant cell: soma-axon voltage clamp current differences. Science. 1973 Nov 23;182(4114):843–845. doi: 10.1126/science.182.4114.843. [DOI] [PubMed] [Google Scholar]
- Kerkut G. A., Meech R. W. The effect of ions on the membrane potential of snail neurones. Comp Biochem Physiol. 1967 Feb;20(2):411–429. doi: 10.1016/0010-406x(67)90257-5. [DOI] [PubMed] [Google Scholar]
- Meech R. W. The sensitivity of Helix aspersa neurones to injected calcium ions. J Physiol. 1974 Mar;237(2):259–277. doi: 10.1113/jphysiol.1974.sp010481. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meves H. The ionic requirements for the production of action potentials in helix pomatia neurones. Pflugers Arch. 1968;304(3):215–241. doi: 10.1007/BF00592126. [DOI] [PubMed] [Google Scholar]
- Moreton R. B. Electrophysiology and ionic movements in the central nervous system of the snail, Helix aspersa. J Exp Biol. 1972 Oct;57(2):513–541. doi: 10.1242/jeb.57.2.513. [DOI] [PubMed] [Google Scholar]
- Moreton R. B. Ionic mechanism of the action potentials of giant neurones of Helix aspersa. Nature. 1968 Jul 6;219(5149):70–71. doi: 10.1038/219070a0. [DOI] [PubMed] [Google Scholar]
- Reuter H. Divalent cations as charge carriers in excitable membranes. Prog Biophys Mol Biol. 1973;26:1–43. doi: 10.1016/0079-6107(73)90016-3. [DOI] [PubMed] [Google Scholar]
- Reuter H. Strom-Spannungsbeziehungen von Purkinje-Fasern bei verschiedenen extracellulären Calcium-Konzentrationen und unter Adrenalineinwirkung. Pflugers Arch Gesamte Physiol Menschen Tiere. 1966;287(4):357–367. [PubMed] [Google Scholar]
- Sattelle D. B. Electrophysiology of the giant nerve cell bodies of Limnaea stagnalis (L.) (Gastropoda: Pulmonata). J Exp Biol. 1974 Jun;60(3):653–671. doi: 10.1242/jeb.60.3.653. [DOI] [PubMed] [Google Scholar]
- Thomas R. C. Intracellular sodium activity and the sodium pump in snail neurones. J Physiol. 1972 Jan;220(1):55–71. doi: 10.1113/jphysiol.1972.sp009694. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wald F. Ionic differences between somatic and axonal action potentials in snail giant neurones. J Physiol. 1972 Jan;220(2):267–281. doi: 10.1113/jphysiol.1972.sp009706. [DOI] [PMC free article] [PubMed] [Google Scholar]