Abstract
PURPOSE: The purpose of this research is to study the vision development in monocular individuals so as to better understand normal binocular vision development and to refine the treatment of infants with infantile esotropia. METHODS: Thirty-six subjects with one clinically normal eye and one eye with no vision (no light perception or history of enucleation) are studied. In addition to measurement of standard parameters of development such as visual acuity, measurement of motion processing is made by both optokinetic and electrophysiologic techniques. A comparison is made of vision development among three populations: the monocular population, the normal population, and patients with a history of infantile esotropia. Such comparison is made to study the relative effects of interruption of binocularity and binocular competition. The monocular population represents individuals who have interruption of binocularity, whereas the infantile esotropia population has both interruption of binocularity and binocular competition. RESULTS: The OKN data suggest that the monucular population is more similar to the normal population than the esotropia population. The electrophysiologic data shows a statistically significant difference in the three populations. Motion processing is more fully developed in the monocular population than in the infantile esotropia population when compared to the normal population. CONCLUSIONS: 1. The development of motion processing appears to be particularly vulnerable to abnormal experience during the first year of life. 2. Monocular subjects have a less abnormal motion processing system when compared to patients with infantile esotropia even when monocularity is congenital. 3. The results indirectly support the premise that prealignment alternate occlusion is of benefit to the patient with infantile esotropia prior to realignment. 4. Development of the motion processing system does not necessarily parallel the development of other binocular functions.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Archer S. M., Sondhi N., Helveston E. M. Strabismus in infancy. Ophthalmology. 1989 Jan;96(1):133–137. doi: 10.1016/s0161-6420(89)32932-0. [DOI] [PubMed] [Google Scholar]
- Aslin R. N. Development of binocular fixation in human infants. J Exp Child Psychol. 1977 Feb;23(1):133–150. doi: 10.1016/0022-0965(77)90080-7. [DOI] [PubMed] [Google Scholar]
- Aslin R. N., Dumais S. T. Binocular vision in infants: a review and a theoretical framework. Adv Child Dev Behav. 1980;15:53–94. doi: 10.1016/s0065-2407(08)60125-1. [DOI] [PubMed] [Google Scholar]
- Atkinson J., Braddick O., Pimm-Smith E. 'Preferential looking' for monocular and binocular acuity testing of infants. Br J Ophthalmol. 1982 Apr;66(4):264–268. doi: 10.1136/bjo.66.4.264. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Banks M. S., Aslin R. N., Letson R. D. Sensitive period for the development of human binocular vision. Science. 1975 Nov 14;190(4215):675–677. doi: 10.1126/science.1188363. [DOI] [PubMed] [Google Scholar]
- Banks M. S. The development of visual accommodation during early infancy. Child Dev. 1980 Sep;51(3):646–666. [PubMed] [Google Scholar]
- Bateman J. B., Parks M. M., Wheeler N. Discriminant analysis of congenital esotropia surgery. Predictor variables for short- and long-term outcomes. Ophthalmology. 1983 Oct;90(10):1146–1153. doi: 10.1016/s0161-6420(83)34414-6. [DOI] [PubMed] [Google Scholar]
- Beller R., Hoyt C. S., Marg E., Odom J. V. Good visual function after neonatal surgery for congenital monocular cataracts. Am J Ophthalmol. 1981 May;91(5):559–565. doi: 10.1016/0002-9394(81)90053-2. [DOI] [PubMed] [Google Scholar]
- Birch E. E., Gwiazda J., Held R. Stereoacuity development for crossed and uncrossed disparities in human infants. Vision Res. 1982;22(5):507–513. doi: 10.1016/0042-6989(82)90108-0. [DOI] [PubMed] [Google Scholar]
- Birch E. E., Shimojo S., Held R. Preferential-looking assessment of fusion and stereopsis in infants aged 1-6 months. Invest Ophthalmol Vis Sci. 1985 Mar;26(3):366–370. [PubMed] [Google Scholar]
- Blakemore C., Van Sluyters R. C. Reversal of the physiological effects of monocular deprivation in kittens: further evidence for a sensitive period. J Physiol. 1974 Feb;237(1):195–216. doi: 10.1113/jphysiol.1974.sp010478. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bonaventure N., Kim M. S., Jardon B., Yücel H. Pharmacological study of the chicken's monocular optokinetic nystagmus: effects of GABAergic agonist and antagonists. Vision Res. 1992 Apr;32(4):611–620. doi: 10.1016/0042-6989(92)90177-k. [DOI] [PubMed] [Google Scholar]
- Bower T. G. The object in the world of the infant. Sci Am. 1971 Oct;225(4):30–38. doi: 10.1038/scientificamerican1071-30. [DOI] [PubMed] [Google Scholar]
- Brookman K. E. Ocular accommodation in human infants. Am J Optom Physiol Opt. 1983 Feb;60(2):91–99. doi: 10.1097/00006324-198302000-00001. [DOI] [PubMed] [Google Scholar]
- CIANCIA A. O. [Exotropia with bilateral limitation of abduction in the infant]. Arch Oftalmol B Aires. 1962 Sep;37:207–211. [PubMed] [Google Scholar]
- Chalupa L. M., Williams R. W. Organization of the cat's lateral geniculate nucleus following interruption of prenatal binocular competition. Hum Neurobiol. 1984;3(2):103–107. [PubMed] [Google Scholar]
- Ciancia A. O. Oculomotor disturbances and VER findings in patients with early monocular loss of vision. Graefes Arch Clin Exp Ophthalmol. 1988;226(2):108–110. doi: 10.1007/BF02173293. [DOI] [PubMed] [Google Scholar]
- Day S. H., Orel-Bixler D. A., Norcia A. M. Abnormal acuity development in infantile esotropia. Invest Ophthalmol Vis Sci. 1988 Feb;29(2):327–329. [PubMed] [Google Scholar]
- DeYoe E. A., Van Essen D. C. Concurrent processing streams in monkey visual cortex. Trends Neurosci. 1988 May;11(5):219–226. doi: 10.1016/0166-2236(88)90130-0. [DOI] [PubMed] [Google Scholar]
- Distler C., Hoffmann K. P. Early development of the subcortical and cortical pathway involved in optokinetic nystagmus: the cat as a model for man? Behav Brain Res. 1992 Jul 31;49(1):69–75. doi: 10.1016/s0166-4328(05)80195-0. [DOI] [PubMed] [Google Scholar]
- Donzis P. B., Rappazzo J. A., Burde R. M., Gordon M. Effect of binocular variations of Snellen's visual acuity on Titmus stereoacuity. Arch Ophthalmol. 1983 Jun;101(6):930–932. doi: 10.1001/archopht.1983.01040010930016. [DOI] [PubMed] [Google Scholar]
- Essen D. C., Zeki S. M. The topographic organization of rhesus monkey prestriate cortex. J Physiol. 1978 Apr;277:193–226. doi: 10.1113/jphysiol.1978.sp012269. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fisher N. F., Flom M. C., Jampolsky A. Early surgery of congenital esotropia. Am J Ophthalmol. 1968 Mar;65(3):439–443. doi: 10.1016/0002-9394(68)93099-7. [DOI] [PubMed] [Google Scholar]
- Foster R. S., Paul T. O., Jampolsky A. Mangement of infantile esotropia. Am J Ophthalmol. 1976 Aug;82(2):291–299. doi: 10.1016/0002-9394(76)90436-0. [DOI] [PubMed] [Google Scholar]
- Fox R., Aslin R. N., Shea S. L., Dumais S. T. Stereopsis in human infants. Science. 1980 Jan 18;207(4428):323–324. doi: 10.1126/science.7350666. [DOI] [PubMed] [Google Scholar]
- Freeman R. D., Bradley A. Monocularly deprived humans: nondeprived eye has supernormal vernier acuity. J Neurophysiol. 1980 Jun;43(6):1645–1653. doi: 10.1152/jn.1980.43.6.1645. [DOI] [PubMed] [Google Scholar]
- Frégnac Y., Imbert M. Development of neuronal selectivity in primary visual cortex of cat. Physiol Rev. 1984 Jan;64(1):325–434. doi: 10.1152/physrev.1984.64.1.325. [DOI] [PubMed] [Google Scholar]
- Garraghty P. E., Shatz C. J., Sretavan D. W., Sur M. Axon arbors of X and Y retinal ganglion cells are differentially affected by prenatal disruption of binocular inputs. Proc Natl Acad Sci U S A. 1988 Oct;85(19):7361–7365. doi: 10.1073/pnas.85.19.7361. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goodwin R. T., Romano P. E. Stereoacuity degradation by experimental and real monocular and binocular amblyopia. Invest Ophthalmol Vis Sci. 1985 Jul;26(7):917–923. [PubMed] [Google Scholar]
- HAYNES H., WHITE B. L., HELD R. VISUAL ACCOMMODATION IN HUMAN INFANTS. Science. 1965 Apr 23;148(3669):528–530. doi: 10.1126/science.148.3669.528. [DOI] [PubMed] [Google Scholar]
- Hamer R. D., Norcia A. M. The development of motion sensitivity during the first year of life. Vision Res. 1994 Sep;34(18):2387–2402. doi: 10.1016/0042-6989(94)90283-6. [DOI] [PubMed] [Google Scholar]
- Held R., Birch E., Gwiazda J. Stereoacuity of human infants. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5572–5574. doi: 10.1073/pnas.77.9.5572. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Helveston E. M., Pinchoff B., Ellis F. D., Miller K. Unilateral esotropia after enucleation in infancy. Am J Ophthalmol. 1985 Jul 15;100(1):96–99. doi: 10.1016/s0002-9394(14)74990-6. [DOI] [PubMed] [Google Scholar]
- Hendrickson A. E., Yuodelis C. The morphological development of the human fovea. Ophthalmology. 1984 Jun;91(6):603–612. doi: 10.1016/s0161-6420(84)34247-6. [DOI] [PubMed] [Google Scholar]
- Hoffmann K. P., Stone J. Retinal input to the nucleus of the optic tract of the cat assessed by antidromic activation of ganglion cells. Exp Brain Res. 1985;59(2):395–403. doi: 10.1007/BF00230920. [DOI] [PubMed] [Google Scholar]
- Hoyt C. S. The clinical usefulness of the visual evoked response. J Pediatr Ophthalmol Strabismus. 1984 Nov-Dec;21(6):231–234. doi: 10.3928/0191-3913-19841101-08. [DOI] [PubMed] [Google Scholar]
- Hubel D. H., Livingstone M. S. Segregation of form, color, and stereopsis in primate area 18. J Neurosci. 1987 Nov;7(11):3378–3415. doi: 10.1523/JNEUROSCI.07-11-03378.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hubel D. H., Wiesel T. N. Binocular interaction in striate cortex of kittens reared with artificial squint. J Neurophysiol. 1965 Nov;28(6):1041–1059. doi: 10.1152/jn.1965.28.6.1041. [DOI] [PubMed] [Google Scholar]
- Huttenlocher P. R., de Courten C., Garey L. J., Van der Loos H. Synaptogenesis in human visual cortex--evidence for synapse elimination during normal development. Neurosci Lett. 1982 Dec 13;33(3):247–252. doi: 10.1016/0304-3940(82)90379-2. [DOI] [PubMed] [Google Scholar]
- Ing M. R. Early surgical alignment for congenital esotropia. Trans Am Ophthalmol Soc. 1981;79:625–663. [PMC free article] [PubMed] [Google Scholar]
- Jampolsky A., Norcia A. M., Hamer R. D. Preoperative alternate occlusion decreases motion processing abnormalities in infantile esotropia. J Pediatr Ophthalmol Strabismus. 1994 Jan-Feb;31(1):6–17. doi: 10.3928/0191-3913-19940101-04. [DOI] [PubMed] [Google Scholar]
- Jones S. T. Congenital esotropia: search for etiology. Surv Ophthalmol. 1988 Jul-Aug;33(1):69–70. doi: 10.1016/0039-6257(88)90082-3. [DOI] [PubMed] [Google Scholar]
- LeVay S., Stryker M. P., Shatz C. J. Ocular dominance columns and their development in layer IV of the cat's visual cortex: a quantitative study. J Comp Neurol. 1978 May 1;179(1):223–244. doi: 10.1002/cne.901790113. [DOI] [PubMed] [Google Scholar]
- LeVay S., Wiesel T. N., Hubel D. H. The development of ocular dominance columns in normal and visually deprived monkeys. J Comp Neurol. 1980 May 1;191(1):1–51. doi: 10.1002/cne.901910102. [DOI] [PubMed] [Google Scholar]
- Lovasik J. V., Szymkiw M. Effects of aniseikonia, anisometropia, accommodation, retinal illuminance, and pupil size on stereopsis. Invest Ophthalmol Vis Sci. 1985 May;26(5):741–750. [PubMed] [Google Scholar]
- Mishkin M., Ungerleider L. G. Contribution of striate inputs to the visuospatial functions of parieto-preoccipital cortex in monkeys. Behav Brain Res. 1982 Sep;6(1):57–77. doi: 10.1016/0166-4328(82)90081-x. [DOI] [PubMed] [Google Scholar]
- Movshon J. A., Van Sluyters R. C. Visual neural development. Annu Rev Psychol. 1981;32:477–522. doi: 10.1146/annurev.ps.32.020181.002401. [DOI] [PubMed] [Google Scholar]
- Naegele J. R., Held R. The postnatal development of monocular optokinetic nystagmus in infants. Vision Res. 1982;22(3):341–346. doi: 10.1016/0042-6989(82)90149-3. [DOI] [PubMed] [Google Scholar]
- Norcia A. M., Garcia H., Humphry R., Holmes A., Hamer R. D., Orel-Bixler D. Anomalous motion VEPs in infants and in infantile esotropia. Invest Ophthalmol Vis Sci. 1991 Feb;32(2):436–439. [PubMed] [Google Scholar]
- Norcia A. M., Sutter E. E., Tyler C. W. Electrophysiological evidence for the existence of coarse and fine disparity mechanisms in human. Vision Res. 1985;25(11):1603–1611. doi: 10.1016/0042-6989(85)90130-0. [DOI] [PubMed] [Google Scholar]
- Norcia A. M., Tyler C. W., Hamer R. D. Development of contrast sensitivity in the human infant. Vision Res. 1990;30(10):1475–1486. doi: 10.1016/0042-6989(90)90028-j. [DOI] [PubMed] [Google Scholar]
- Norcia A. M., Tyler C. W. Spatial frequency sweep VEP: visual acuity during the first year of life. Vision Res. 1985;25(10):1399–1408. doi: 10.1016/0042-6989(85)90217-2. [DOI] [PubMed] [Google Scholar]
- Ohzawa I., Freeman R. D. The binocular organization of complex cells in the cat's visual cortex. J Neurophysiol. 1986 Jul;56(1):243–259. doi: 10.1152/jn.1986.56.1.243. [DOI] [PubMed] [Google Scholar]
- Ohzawa I., Freeman R. D. The binocular organization of simple cells in the cat's visual cortex. J Neurophysiol. 1986 Jul;56(1):221–242. doi: 10.1152/jn.1986.56.1.221. [DOI] [PubMed] [Google Scholar]
- Petrig B., Julesz B., Kropfl W., Baumgartner G., Anliker M. Development of stereopsis and cortical binocularity in human infants: electrophysiological evidence. Science. 1981 Sep 18;213(4514):1402–1405. doi: 10.1126/science.7268443. [DOI] [PubMed] [Google Scholar]
- Poggio G. F., Fischer B. Binocular interaction and depth sensitivity in striate and prestriate cortex of behaving rhesus monkey. J Neurophysiol. 1977 Nov;40(6):1392–1405. doi: 10.1152/jn.1977.40.6.1392. [DOI] [PubMed] [Google Scholar]
- Rakic P. Development of visual centers in the primate brain depends on binocular competition before birth. Science. 1981 Nov 20;214(4523):928–931. doi: 10.1126/science.7302569. [DOI] [PubMed] [Google Scholar]
- Rakic P. Prenatal genesis of connections subserving ocular dominance in the rhesus monkey. Nature. 1976 Jun 10;261(5560):467–471. doi: 10.1038/261467a0. [DOI] [PubMed] [Google Scholar]
- Rakic P. Specification of cerebral cortical areas. Science. 1988 Jul 8;241(4862):170–176. doi: 10.1126/science.3291116. [DOI] [PubMed] [Google Scholar]
- Reed M. J., Steinbach M. J., Anstis S. M., Gallie B., Smith D., Kraft S. The development of optokinetic nystagmus in strabismic and monocularly enucleated subjects. Behav Brain Res. 1991 Dec 13;46(1):31–42. doi: 10.1016/s0166-4328(05)80094-4. [DOI] [PubMed] [Google Scholar]
- Schor C. M., Levi D. M. Disturbances of small-field horizontal and vertical optokinetic nystagmus in amblyopia. Invest Ophthalmol Vis Sci. 1980 Jun;19(6):668–683. [PubMed] [Google Scholar]
- Schor C. M., Wood I. C., Ogawa J. Spatial tuning of static and dynamic local stereopsis. Vision Res. 1984;24(6):573–578. doi: 10.1016/0042-6989(84)90111-1. [DOI] [PubMed] [Google Scholar]
- Shook B. L., Maffei L., Chalupa L. M. Functional organization of the cat's visual cortex after prenatal interruption of binocular interactions. Proc Natl Acad Sci U S A. 1985 Jun;82(11):3901–3905. doi: 10.1073/pnas.82.11.3901. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sokol S. Measurement of infant visual acuity from pattern reversal evoked potentials. Vision Res. 1978;18(1):33–39. doi: 10.1016/0042-6989(78)90074-3. [DOI] [PubMed] [Google Scholar]
- Swan K. C., Wilkins J. H. Extraocular muscle surgery in early infancy--anatomical factors. J Pediatr Ophthalmol Strabismus. 1984 Mar-Apr;21(2):44–49. doi: 10.3928/0191-3913-19840301-03. [DOI] [PubMed] [Google Scholar]
- Taylor D. M. Is congenital esotropia functionally curable? Trans Am Ophthalmol Soc. 1972;70:529–576. [PMC free article] [PubMed] [Google Scholar]
- Teller D. Y., Morse R., Borton R., Regal D. Visual acuity for vertical and diagonal gratings in human infants. Vision Res. 1974 Dec;14(12):1433–1439. doi: 10.1016/0042-6989(74)90018-2. [DOI] [PubMed] [Google Scholar]
- Teller J., Savir H., Yelin N., Cohen R., Leviav A., Elstin R. Late results of surgery for congenital esotropia. Metab Pediatr Syst Ophthalmol (1985) 1988;11(4):156–159. [PubMed] [Google Scholar]
- Tychsen L., Lisberger S. G. Maldevelopment of visual motion processing in humans who had strabismus with onset in infancy. J Neurosci. 1986 Sep;6(9):2495–2508. doi: 10.1523/JNEUROSCI.06-09-02495.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tyler C. W. A stereoscopic view of visual processing streams. Vision Res. 1990;30(11):1877–1895. doi: 10.1016/0042-6989(90)90165-h. [DOI] [PubMed] [Google Scholar]
- Tyler C. W., Cavanagh P. Purely chromatic perception of motion in depth: two eyes as sensitive as one. Percept Psychophys. 1991 Jan;49(1):53–61. doi: 10.3758/bf03211616. [DOI] [PubMed] [Google Scholar]
- Virsu V., Näsänen R., Osmoviita K. Cortical magnification and peripheral vision. J Opt Soc Am A. 1987 Aug;4(8):1568–1578. doi: 10.1364/josaa.4.001568. [DOI] [PubMed] [Google Scholar]
- Virsu V., Rovamo J. Visual resolution, contrast sensitivity, and the cortical magnification factor. Exp Brain Res. 1979;37(3):475–494. doi: 10.1007/BF00236818. [DOI] [PubMed] [Google Scholar]
- WALTERS C. P., Walk R. D. Visual placing by human infants. J Exp Child Psychol. 1974 Aug;18(1):34–40. doi: 10.1016/0022-0965(74)90086-1. [DOI] [PubMed] [Google Scholar]
- WIESEL T. N., HUBEL D. H. EFFECTS OF VISUAL DEPRIVATION ON MORPHOLOGY AND PHYSIOLOGY OF CELLS IN THE CATS LATERAL GENICULATE BODY. J Neurophysiol. 1963 Nov;26:978–993. doi: 10.1152/jn.1963.26.6.978. [DOI] [PubMed] [Google Scholar]
- WIESEL T. N., HUBEL D. H. SINGLE-CELL RESPONSES IN STRIATE CORTEX OF KITTENS DEPRIVED OF VISION IN ONE EYE. J Neurophysiol. 1963 Nov;26:1003–1017. doi: 10.1152/jn.1963.26.6.1003. [DOI] [PubMed] [Google Scholar]
- Wiesel T. N., Hubel D. H. Comparison of the effects of unilateral and bilateral eye closure on cortical unit responses in kittens. J Neurophysiol. 1965 Nov;28(6):1029–1040. doi: 10.1152/jn.1965.28.6.1029. [DOI] [PubMed] [Google Scholar]
- Wilson H. R. Development of spatiotemporal mechanisms in infant vision. Vision Res. 1988;28(5):611–628. doi: 10.1016/0042-6989(88)90111-3. [DOI] [PubMed] [Google Scholar]
- Yuodelis C., Hendrickson A. A qualitative and quantitative analysis of the human fovea during development. Vision Res. 1986;26(6):847–855. doi: 10.1016/0042-6989(86)90143-4. [DOI] [PubMed] [Google Scholar]