Abstract
PURPOSE: To carry out clinical and genetic characterization of juvenile-onset primary open-angle glaucoma (POAG) inherited as an autosomal dominant trait in a Panamanian family. METHODS: Twenty-two members of a six-generation Panamanian family underwent an ophthalmologic evaluation. Blood samples were collected from 20 of these individuals for preparation of DNA for use in screening of microsatellite repeat genetic markers via polymerase chain reaction. RESULTS: Eleven living family members covering 4 generations were diagnosed as affected with open-angle glaucoma of primarily juvenile onset. Four of 6 other at-risk individuals examined and enrolled were characterized as unaffected and two as indeterminate. Two additional individuals were not included in this study because they were too young to characterize or to provide a blood sample. Three spouses of affected family members were also examined and found not to have glaucoma. Of clinical importance was the finding of markedly elevated intraocular pressure (IOP) in 2 affected brothers, both of whom were advised to have urgent filtration surgery; the finding of elevated IOP in the only seeing eye of the mother of these brothers, causing us to advise her to pursue more aggressive treatment; and the finding of early signs of glaucoma in a previously undiagnosed 9-year-old family member. Linkage analysis using selected microsatellite repeat markers in the 1q21-q31 region revealed strong evidence for linkage to the GLC1A gene with a maximum lod score of 3.75 for marker D1S431 at a recombination fraction of 0.00. CONCLUSIONS: The most likely interpretation of our data is that a mutation in the GLC1A gene is responsible for juvenile-onset POAG in this Panamanian family, thus expanding the countries of origin where this gene has been found to exist. The numbers of families with GLC1A glaucoma now reported from only a few centers worldwide raise questions about whether this disease may be more common than once thought. Evaluation of treatment histories and clinical outcomes in members of this and other previously reported families indicates that ophthalmologists need to understand the necessity for urgent filtration surgery in most cases of GLC1A glaucoma if vision is to be preserved.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Chen J. D., Halliday F., Keith G., Sheffield L., Dickinson P., Gray R., Constable I., Denton M. Linkage heterogeneity between X-linked retinitis pigmentosa and a map of 10 RFLP loci. Am J Hum Genet. 1989 Sep;45(3):401–411. [PMC free article] [PubMed] [Google Scholar]
- Graff C., Urbak S. F., Jerndal T., Wadelius C. Confirmation of linkage to 1q21-31 in a Danish autosomal dominant juvenile-onset glaucoma family and evidence of genetic heterogeneity. Hum Genet. 1995 Sep;96(3):285–289. doi: 10.1007/BF00210408. [DOI] [PubMed] [Google Scholar]
- Gyapay G., Morissette J., Vignal A., Dib C., Fizames C., Millasseau P., Marc S., Bernardi G., Lathrop M., Weissenbach J. The 1993-94 Généthon human genetic linkage map. Nat Genet. 1994 Jun;7(2 Spec No):246–339. doi: 10.1038/ng0694supp-246. [DOI] [PubMed] [Google Scholar]
- Johnson A. T., Drack A. V., Kwitek A. E., Cannon R. L., Stone E. M., Alward W. L. Clinical features and linkage analysis of a family with autosomal dominant juvenile glaucoma. Ophthalmology. 1993 Apr;100(4):524–529. doi: 10.1016/s0161-6420(13)31615-7. [DOI] [PubMed] [Google Scholar]
- Lange K., Weeks D., Boehnke M. Programs for Pedigree Analysis: MENDEL, FISHER, and dGENE. Genet Epidemiol. 1988;5(6):471–472. doi: 10.1002/gepi.1370050611. [DOI] [PubMed] [Google Scholar]
- Lichter P. R. Genetic clues to glaucoma's secrets. The L Edward Jackson Memorial Lecture. Part 2. Am J Ophthalmol. 1994 Jun 15;117(6):706–727. doi: 10.1016/s0002-9394(14)70314-9. [DOI] [PubMed] [Google Scholar]
- Lichter P. R. Genetic clues to glaucoma's secrets. The L Edward Jackson Memorial Lecture. Part 2. Am J Ophthalmol. 1994 Jun 15;117(6):706–727. doi: 10.1016/s0002-9394(14)70314-9. [DOI] [PubMed] [Google Scholar]
- Litt M., Luty J. A. A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am J Hum Genet. 1989 Mar;44(3):397–401. [PMC free article] [PubMed] [Google Scholar]
- MORTON N. E. Sequential tests for the detection of linkage. Am J Hum Genet. 1955 Sep;7(3):277–318. [PMC free article] [PubMed] [Google Scholar]
- Meyer A., Valtot F., Béchetoille A., Rouland J. F., Dascotte J. C., Férec C., Bach J. F., Chaventré A., Garchon H. J. Liaison du glaucome juvénile au chromosome 1q dans deux familles françaises. C R Acad Sci III. 1994 Jun;317(6):565–570. [PubMed] [Google Scholar]
- Morissette J., Côté G., Anctil J. L., Plante M., Amyot M., Héon E., Trope G. E., Weissenbach J., Raymond V. A common gene for juvenile and adult-onset primary open-angle glaucomas confined on chromosome 1q. Am J Hum Genet. 1995 Jun;56(6):1431–1442. [PMC free article] [PubMed] [Google Scholar]
- Mullis K. B., Faloona F. A. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol. 1987;155:335–350. doi: 10.1016/0076-6879(87)55023-6. [DOI] [PubMed] [Google Scholar]
- Petrash J. M. Applications of molecular biological techniques to the understanding of visual system disorders. Am J Ophthalmol. 1992 May 15;113(5):573–582. doi: 10.1016/s0002-9394(14)74732-4. [DOI] [PubMed] [Google Scholar]
- Richards J. E., Lichter P. R., Boehnke M., Uro J. L., Torrez D., Wong D., Johnson A. T. Mapping of a gene for autosomal dominant juvenile-onset open-angle glaucoma to chromosome Iq. Am J Hum Genet. 1994 Jan;54(1):62–70. [PMC free article] [PubMed] [Google Scholar]
- Richards J. E., Lichter P. R., Herman S., Hauser E. R., Hou Y. C., Johnson A. T., Boehnke M. Probable exclusion of GLC1A as a candidate glaucoma gene in a family with middle-age-onset primary open-angle glaucoma. Ophthalmology. 1996 Jul;103(7):1035–1040. doi: 10.1016/s0161-6420(96)30570-8. [DOI] [PubMed] [Google Scholar]
- Shaffer R. N. Genetics and the congenital glaucomas. Am J Ophthalmol. 1965 Dec;60(6):981–994. doi: 10.1016/0002-9394(65)92805-9. [DOI] [PubMed] [Google Scholar]
- Sheffield V. C., Stone E. M., Alward W. L., Drack A. V., Johnson A. T., Streb L. M., Nichols B. E. Genetic linkage of familial open angle glaucoma to chromosome 1q21-q31. Nat Genet. 1993 May;4(1):47–50. doi: 10.1038/ng0593-47. [DOI] [PubMed] [Google Scholar]
- Teague P. W., Aldred M. A., Jay M., Dempster M., Harrison C., Carothers A. D., Hardwick L. J., Evans H. J., Strain L., Brock D. J. Heterogeneity analysis in 40 X-linked retinitis pigmentosa families. Am J Hum Genet. 1994 Jul;55(1):105–111. [PMC free article] [PubMed] [Google Scholar]
- Weber J. L., May P. E. Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am J Hum Genet. 1989 Mar;44(3):388–396. [PMC free article] [PubMed] [Google Scholar]
- Weissenbach J., Gyapay G., Dib C., Vignal A., Morissette J., Millasseau P., Vaysseix G., Lathrop M. A second-generation linkage map of the human genome. Nature. 1992 Oct 29;359(6398):794–801. doi: 10.1038/359794a0. [DOI] [PubMed] [Google Scholar]
- Wiggs J. L., Del Bono E. A., Schuman J. S., Hutchinson B. T., Walton D. S. Clinical features of five pedigrees genetically linked to the juvenile glaucoma locus on chromosome 1q21-q31. Ophthalmology. 1995 Dec;102(12):1782–1789. doi: 10.1016/s0161-6420(95)30793-2. [DOI] [PubMed] [Google Scholar]
- Wiggs J. L., Haines J. L., Paglinauan C., Fine A., Sporn C., Lou D. Genetic linkage of autosomal dominant juvenile glaucoma to 1q21-q31 in three affected pedigrees. Genomics. 1994 May 15;21(2):299–303. doi: 10.1006/geno.1994.1269. [DOI] [PubMed] [Google Scholar]