Abstract
PURPOSE: To evaluate acute histological changes and the induced wound healing response in corneal tissue following noncontact holmium:YAG laser thermal keratoplasty (LTK). METHODS: LTK using 10 pulses and a range of radiant energies was performed on 3 human corneas one day prior ro their removal at penetrating keratoplasty. Rabbit corneas were treated with 10-pulse and 5-pulse LTK and followed for up to 3 months. Tissues were studies with light and transmission electron microscopy and immunohistochemistry. RESULTS: The amount of acute tissue injury increased with increasing pulse radiant energy. In human corneas, changes in the irradiated zones included epithelial cell injury and death loss of fine filamentous structure in Bowman's layer, disruption of stromal lamallae, and keratocyte injury and death. In the rabbit corneas, similar acute changes were noted. By 3 weeks, epithelial hyperplasia and stromal contraction were present. Wound healing in the rabbit corneas included repair of the epithelial attachment complex, keratocyte activation, synthesis of type I collagen, partial restoration of stromal keratan sulfate and type VI collagen, and retrocorneal membrane formation. Compared to 10-pulse treatments, 5-pulse treatments produced less acute tissue injury and had more rapid restoration of normal stromal architecture. CONCLUSION: Noncontact LTK produces acute epithelial and stromal tissue changes and in rabbit corneas stimulates a brisk wound healing response. These changes could contribute to postoperative regression of induced refractive correction. Further work is required to determine if reductions in the magnitude of acute tissue injury and induced wound healing response will enhance the efficacy and stability of LTK.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allain J. C., Le Lous M., Cohen-Solal, Bazin S., Maroteaux P. Isometric tensions developed during the hydrothermal swelling of rat skin. Connect Tissue Res. 1980;7(3):127–133. doi: 10.3109/03008208009152104. [DOI] [PubMed] [Google Scholar]
- Anderson J. A., Binder P. S., Rock M. E., Vrabec M. P. Human excimer laser keratectomy. Immunohistochemical analysis of healing. Arch Ophthalmol. 1996 Jan;114(1):54–60. doi: 10.1001/archopht.1996.01100130050008. [DOI] [PubMed] [Google Scholar]
- Anderson J. A., Malfroy B., Richard N. R., Kullerstrand L., Lucas C., Binder P. S. Substance P contracts the human iris sphincter: possible modulation by endogenous enkephalinase. Regul Pept. 1990 Jun;29(1):49–58. doi: 10.1016/0167-0115(90)90108-9. [DOI] [PubMed] [Google Scholar]
- Aquavella J. V., Buxton J. N., Shaw E. L. Thermokeratoplasty in the treatment of persistent corneal hydrops. Arch Ophthalmol. 1977 Jan;95(1):81–84. doi: 10.1001/archopht.1977.04450010081007. [DOI] [PubMed] [Google Scholar]
- Aquavella J. V., Smith R. S., Shaw E. L. Alterations in corneal morphology following thermokeratoplasty. Arch Ophthalmol. 1976 Dec;94(12):2082–2085. doi: 10.1001/archopht.1976.03910040742008. [DOI] [PubMed] [Google Scholar]
- Aquavella J. V. Thermokeratoplasty. Ophthalmic Surg. 1974 Spring;5(1):39–47. [PubMed] [Google Scholar]
- Arentsen J. J., Rodriques M. M., Laibson P. R. Histopathologic changes after thermokeratoplasty for keratoconus. Invest Ophthalmol Vis Sci. 1977 Jan;16(1):32–38. [PubMed] [Google Scholar]
- Ariyasu R. G., Sand B., Menefee R., Hennings D., Rose C., Berry M., Garbus J. J., McDonnell P. J. Holmium laser thermal keratoplasty of 10 poorly sighted eyes. J Refract Surg. 1995 Sep-Oct;11(5):358–365. doi: 10.3928/1081-597X-19950901-12. [DOI] [PubMed] [Google Scholar]
- BAKERMAN S. DISTRIBUTION OF THE ALPHA- AND BETA-COMPONENTS IN HUMAN-SKIN COLLAGEN WITH AGE. Biochim Biophys Acta. 1964 Sep 4;90:621–623. doi: 10.1016/0304-4165(64)90246-6. [DOI] [PubMed] [Google Scholar]
- Balestrazzi E., De Molfetta V., Spadea L., Vinciguerra P., Palmieri G., Santeusanio G., Spagnoli L. Histological, immunohistochemical, and ultrastructural findings in human corneas after photorefractive keratectomy. J Refract Surg. 1995 May-Jun;11(3):181–187. [PubMed] [Google Scholar]
- Beckman H., Fuller T. A., Boyman R., Mandell G., Nathan L. E., Jr Carbon dioxide laser surgery of the eye and adnexa. Ophthalmology. 1980 Oct;87(10):990–1000. doi: 10.1016/s0161-6420(80)35139-7. [DOI] [PubMed] [Google Scholar]
- Binder P. S., Anderson J. A., Rock M. E., Vrabec M. P. Human excimer laser keratectomy. Clinical and histopathologic correlations. Ophthalmology. 1994 Jun;101(6):979–989. doi: 10.1016/s0161-6420(94)31202-4. [DOI] [PubMed] [Google Scholar]
- Binder P. S., Rock M. E., Schmidt K. C., Anderson J. A. High-voltage electron microscopy of normal human cornea. Invest Ophthalmol Vis Sci. 1991 Jul;32(8):2234–2243. [PubMed] [Google Scholar]
- Campos M., Szerenyi K., Lee M., McDonnell J. M., Lopez P. F., McDonnell P. J. Keratocyte loss after corneal deepithelialization in primates and rabbits. Arch Ophthalmol. 1994 Feb;112(2):254–260. doi: 10.1001/archopht.1994.01090140130034. [DOI] [PubMed] [Google Scholar]
- Cintron C. Corneal epithelial and stromal reactions to excimer laser photorefractive keratectomy. II. Unpredictable corneal cicatrization. Arch Ophthalmol. 1990 Nov;108(11):1540–1541. doi: 10.1001/archopht.1990.01070130042025. [DOI] [PubMed] [Google Scholar]
- Cintron C., Hong B. S. Heterogeneity of collagens in rabbit cornea: type VI collagen. Invest Ophthalmol Vis Sci. 1988 May;29(5):760–766. [PubMed] [Google Scholar]
- Corbett M. C., O'Brart D. P., Marshall J. Do topical corticosteroids have a role following excimer laser photorefractive keratectomy? J Refract Surg. 1995 Sep-Oct;11(5):380–387. doi: 10.3928/1081-597X-19950901-15. [DOI] [PubMed] [Google Scholar]
- Cusumano A., Busin M., Spitznas M., Koch F. Epikeratophakia for the correction of myopia: lenticule design and related histopathological findings. Refract Corneal Surg. 1990 Mar-Apr;6(2):120–124. [PubMed] [Google Scholar]
- Deák G., Romhányi G. The thermal shrinkage process of collagen fibres as revealed by polarization optical analysis of topooptical staining reactions. Acta Morphol Acad Sci Hung. 1967;15(2):195–208. [PubMed] [Google Scholar]
- Fagerholm P., Hamberg-Nyström H., Tengroth B. Wound healing and myopic regression following photorefractive keratectomy. Acta Ophthalmol (Copenh) 1994 Apr;72(2):229–234. doi: 10.1111/j.1755-3768.1994.tb05021.x. [DOI] [PubMed] [Google Scholar]
- Fantes F. E., Hanna K. D., Waring G. O., 3rd, Pouliquen Y., Thompson K. P., Savoldelli M. Wound healing after excimer laser keratomileusis (photorefractive keratectomy) in monkeys. Arch Ophthalmol. 1990 May;108(5):665–675. doi: 10.1001/archopht.1990.01070070051034. [DOI] [PubMed] [Google Scholar]
- Feldman S. T., Ellis W., Frucht-Pery J., Chayet A., Brown S. I. Regression of effect following radial thermokeratoplasty in humans. Refract Corneal Surg. 1989 Sep-Oct;5(5):288–291. [PubMed] [Google Scholar]
- Fogle J. A., Kenyon K. R., Stark W. J. Damage to epithelial basement membrane by thermokeratoplasty. Am J Ophthalmol. 1977 Mar;83(3):392–401. doi: 10.1016/0002-9394(77)90739-5. [DOI] [PubMed] [Google Scholar]
- Fountain T. R., de la Cruz Z., Green W. R., Stark W. J., Azar D. T. Reassembly of corneal epithelial adhesion structures after excimer laser keratectomy in humans. Arch Ophthalmol. 1994 Jul;112(7):967–972. doi: 10.1001/archopht.1994.01090190115030. [DOI] [PubMed] [Google Scholar]
- Fujikawa L. S., Foster C. S., Gipson I. K., Colvin R. B. Basement membrane components in healing rabbit corneal epithelial wounds: immunofluorescence and ultrastructural studies. J Cell Biol. 1984 Jan;98(1):128–138. doi: 10.1083/jcb.98.1.128. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Funderburgh J. L., Caterson B., Conrad G. W. Distribution of proteoglycans antigenically related to corneal keratan sulfate proteoglycan. J Biol Chem. 1987 Aug 25;262(24):11634–11640. [PubMed] [Google Scholar]
- Gasset A. R., Lorenzetti D. W., Ellison E. M., Kaufman H. E. Quantitative corticosteroid effect on corneal wound healing. Arch Ophthalmol. 1969 Apr;81(4):589–591. doi: 10.1001/archopht.1969.00990010591023. [DOI] [PubMed] [Google Scholar]
- Gauthier C. A., Epstein D., Holden B. A., Tengroth B., Fagerholm P., Hamberg-Nyström H., Sievert R. Epithelial alterations following photorefractive keratectomy for myopia. J Refract Surg. 1995 Mar-Apr;11(2):113–118. doi: 10.3928/1081-597X-19950301-11. [DOI] [PubMed] [Google Scholar]
- Gipson I. K., Spurr-Michaud S., Tisdale A., Keough M. Reassembly of the anchoring structures of the corneal epithelium during wound repair in the rabbit. Invest Ophthalmol Vis Sci. 1989 Mar;30(3):425–434. [PubMed] [Google Scholar]
- Goodman G. L., Trokel S. L., Stark W. J., Munnerlyn C. R., Green W. R. Corneal healing following laser refractive keratectomy. Arch Ophthalmol. 1989 Dec;107(12):1799–1803. doi: 10.1001/archopht.1989.01070020881031. [DOI] [PubMed] [Google Scholar]
- Goodman W. M., SundarRaj N., Garone M., Arffa R. C., Thoft R. A. Unique parameters in the healing of linear partial thickness penetrating corneal incisions in rabbit: immunohistochemical evaluation. Curr Eye Res. 1989 Mar;8(3):305–316. doi: 10.3109/02713688908997573. [DOI] [PubMed] [Google Scholar]
- Hanna K. D., Pouliquen Y. M., Savoldelli M., Fantes F., Thompson K. P., Waring G. O., 3rd, Samson J. Corneal wound healing in monkeys 18 months after excimer laser photorefractive keratectomy. Refract Corneal Surg. 1990 Sep-Oct;6(5):340–345. [PubMed] [Google Scholar]
- Hanna K. D., Pouliquen Y., Waring G. O., 3rd, Savoldelli M., Cotter J., Morton K., Menasche M. Corneal stromal wound healing in rabbits after 193-nm excimer laser surface ablation. Arch Ophthalmol. 1989 Jun;107(6):895–901. doi: 10.1001/archopht.1989.01070010917041. [DOI] [PubMed] [Google Scholar]
- Horn G., Spears K. G., Lopez O., Lewicky A., Yang X. Y., Riaz M., Wang R., Silva D., Serafin J. New refractive method for laser thermal keratoplasty with the Co:MgF2 laser. J Cataract Refract Surg. 1990 Sep;16(5):611–616. doi: 10.1016/s0886-3350(13)80779-1. [DOI] [PubMed] [Google Scholar]
- Janin A., Konttinen Y. T., Grönblad M., Karhunen P., Gosset D., Malmström M. Fibroblast markers in labial salivary gland biopsies in progressive systemic sclerosis. Clin Exp Rheumatol. 1990 May-Jun;8(3):237–242. [PubMed] [Google Scholar]
- Kenyon K. R., Berman M., Rose J., Gage J. Prevention of stromal ulceration in the alkali-burned rabbit cornea by glued-on contact lens. Evidence for the role of polymorphonuclear leukocytes in collagen degradation. Invest Ophthalmol Vis Sci. 1979 Jun;18(6):570–587. [PubMed] [Google Scholar]
- Lass J. H., Ellison R. R., Wong K. M., Klein L. Collagen degradation and synthesis in experimental corneal grafts. Exp Eye Res. 1986 Mar;42(3):201–210. doi: 10.1016/0014-4835(86)90054-0. [DOI] [PubMed] [Google Scholar]
- Mainster M. A. Ophthalmic applications of infrared lasers -- thermal considerations. Invest Ophthalmol Vis Sci. 1979 Apr;18(4):414–420. [PubMed] [Google Scholar]
- Malley D. S., Steinert R. F., Puliafito C. A., Dobi E. T. Immunofluorescence study of corneal wound healing after excimer laser anterior keratectomy in the monkey eye. Arch Ophthalmol. 1990 Sep;108(9):1316–1322. doi: 10.1001/archopht.1990.01070110132037. [DOI] [PubMed] [Google Scholar]
- McCally R. L., Bargeron C. B., Green W. R., Farrell R. A. Stromal damage in rabbit corneas exposed to CO2 laser radiation. Exp Eye Res. 1983 Dec;37(6):543–550. doi: 10.1016/0014-4835(83)90130-6. [DOI] [PubMed] [Google Scholar]
- McCally R. L., Farrell R. A., Bargeron C. B. Cornea epithelial damage thresholds in rabbits exposed to Tm:YAG laser radiation at 2.02 microns. Lasers Surg Med. 1992;12(6):598–603. doi: 10.1002/lsm.1900120605. [DOI] [PubMed] [Google Scholar]
- McDonald T. O., Borgmann A. R., Roberts M. D., Fox L. G. Corneal wound healing. I. Inhibition of stromal healing by three dexamethasone derivatives. Invest Ophthalmol. 1970 Sep;9(9):703–709. [PubMed] [Google Scholar]
- Moreira H., Campos M., Sawusch M. R., McDonnell J. M., Sand B., McDonnell P. J. Holmium laser thermokeratoplasty. Ophthalmology. 1993 May;100(5):752–761. doi: 10.1016/s0161-6420(93)31579-4. [DOI] [PubMed] [Google Scholar]
- Murata Y., Yoshioka H., Kitaoka M., Iyama K., Okamura R., Usuku G. Type VI collagen in healing rabbit corneal wounds. Ophthalmic Res. 1990;22(3):144–151. doi: 10.1159/000267015. [DOI] [PubMed] [Google Scholar]
- Nakayasu K., Tanaka M., Konomi H., Hayashi T. Distribution of types I, II, III, IV and V collagen in normal and keratoconus corneas. Ophthalmic Res. 1986;18(1):1–10. doi: 10.1159/000265406. [DOI] [PubMed] [Google Scholar]
- Nassaralla B. A., Szerenyi K., Pinheiro M. N., Wee W. R., Nigam A., McDonnell P. J. Prevention of keratocyte loss after corneal deepithelialization in rabbits. Arch Ophthalmol. 1995 Apr;113(4):506–511. doi: 10.1001/archopht.1995.01100040128038. [DOI] [PubMed] [Google Scholar]
- Neumann A. C., Fyodorov S., Sanders D. R. Radial thermokeratoplasty for the correction of hyperopia. Refract Corneal Surg. 1990 Nov-Dec;6(6):404–412. [PubMed] [Google Scholar]
- Neumann A. C., Sanders D., Raanan M., DeLuca M. Hyperopic thermokeratoplasty: clinical evaluation. J Cataract Refract Surg. 1991 Nov;17(6):830–838. doi: 10.1016/s0886-3350(13)80419-1. [DOI] [PubMed] [Google Scholar]
- Parel J. M., Ren Q., Simon G. Noncontact laser photothermal keratoplasty. I: Biophysical principles and laser beam delivery system. J Refract Corneal Surg. 1994 Sep-Oct;10(5):511–518. [PubMed] [Google Scholar]
- Peyman G. A., Larson B., Raichand M., Andrews A. H. Modification of rabbit corneal curvature with use of carbon dioxide laser burns. Ophthalmic Surg. 1980 May;11(5):325–329. [PubMed] [Google Scholar]
- Phillips K., Arffa R., Cintron C., Rose J., Miller D., Kublin C. L., Kenyon K. R. Effects of prednisolone and medroxyprogesterone on corneal wound healing, ulceration, and neovascularization. Arch Ophthalmol. 1983 Apr;101(4):640–643. doi: 10.1001/archopht.1983.01040010640024. [DOI] [PubMed] [Google Scholar]
- Rawe I. M., Zabel R. W., Tuft S. J., Chen V., Meek K. M. A morphological study of rabbit corneas after laser keratectomy. Eye (Lond) 1992;6(Pt 6):637–642. doi: 10.1038/eye.1992.137. [DOI] [PubMed] [Google Scholar]
- Ren Q., Simon G., Parel J. M. Noncontact laser photothermal keratoplasty. III: Histological study in animal eyes. J Refract Corneal Surg. 1994 Sep-Oct;10(5):529–539. [PubMed] [Google Scholar]
- Rock M. E., Anderson J. A., Binder P. S. A modified trichrome stain for light microscopic examination of plastic-embedded corneal tissue. Cornea. 1993 May;12(3):255–260. doi: 10.1097/00003226-199305000-00012. [DOI] [PubMed] [Google Scholar]
- Rowsey J. J., Doss J. D. Preliminary report of Los Alamos Keratoplasty Techniques. Ophthalmology. 1981 Aug;88(8):755–760. doi: 10.1016/s0161-6420(81)34946-x. [DOI] [PubMed] [Google Scholar]
- STRINGER H., PARR J. SHRINKAGE TEMPERATURE OF EYE COLLAGEN. Nature. 1964 Dec 26;204:1307–1307. doi: 10.1038/2041307a0. [DOI] [PubMed] [Google Scholar]
- Seiler T., Matallana M., Bende T. Laser thermokeratoplasty by means of a pulsed holmium:YAG laser for hyperopic correction. Refract Corneal Surg. 1990 Sep-Oct;6(5):335–339. [PubMed] [Google Scholar]
- Shaw E. L., Gasset A. R. Thermokeratoplasty (TKP) temperature profile. Invest Ophthalmol. 1974 Mar;13(3):181–186. [PubMed] [Google Scholar]
- Smelser G. K., Polack F. M., Ozanics V. Persistence of donor collagen in corneal transplants. Exp Eye Res. 1965 Dec;4(4):349–354. doi: 10.1016/s0014-4835(65)80051-3. [DOI] [PubMed] [Google Scholar]
- Smithpeter C., Chan E., Thomsen S., Rylander H. G., 3rd, Welch A. J. Corneal photocoagulation with continuous wave and pulsed holmium: YAG radiation. J Cataract Refract Surg. 1995 May;21(3):258–267. doi: 10.1016/s0886-3350(13)80129-0. [DOI] [PubMed] [Google Scholar]
- Stepp M. A., Spurr-Michaud S., Tisdale A., Elwell J., Gipson I. K. Alpha 6 beta 4 integrin heterodimer is a component of hemidesmosomes. Proc Natl Acad Sci U S A. 1990 Nov;87(22):8970–8974. doi: 10.1073/pnas.87.22.8970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stock E. L., Kurpakus M. A., Sambol B., Jones J. C. Adhesion complex formation after small keratectomy wounds in the cornea. Invest Ophthalmol Vis Sci. 1992 Feb;33(2):304–313. [PubMed] [Google Scholar]
- Sugar J., Chandler J. W. Experimental corneal wound strength. Arch Ophthalmol. 1974 Sep;92(3):248–249. doi: 10.1001/archopht.1974.01010010256018. [DOI] [PubMed] [Google Scholar]
- SundarRaj N., Geiss M. J., 3rd, Fantes F., Hanna K., Anderson S. C., Thompson K. P., Thoft R. A., Waring G. O., 3rd Healing of excimer laser ablated monkey corneas. An immunohistochemical evaluation. Arch Ophthalmol. 1990 Nov;108(11):1604–1610. doi: 10.1001/archopht.1990.01070130106039. [DOI] [PubMed] [Google Scholar]
- Szerenyi K. D., Wang X., Gabrielian K., McDonnell P. J. Keratocyte loss and repopulation of anterior corneal stroma after de-epithelialization. Arch Ophthalmol. 1994 Jul;112(7):973–976. doi: 10.1001/archopht.1994.01090190121031. [DOI] [PubMed] [Google Scholar]
- Tuft S. J., Zabel R. W., Marshall J. Corneal repair following keratectomy. A comparison between conventional surgery and laser photoablation. Invest Ophthalmol Vis Sci. 1989 Aug;30(8):1769–1777. [PubMed] [Google Scholar]
- Verzár F., Nagy I. Z. Electronmicroscopic analysis of thermal collagen denaturation in rat tail tendons. Gerontologia. 1970;16(2):77–82. doi: 10.1159/000211756. [DOI] [PubMed] [Google Scholar]
- Wu W. C., Stark W. J., Green W. R. Corneal wound healing after 193-nm excimer laser keratectomy. Arch Ophthalmol. 1991 Oct;109(10):1426–1432. doi: 10.1001/archopht.1991.01080100106053. [DOI] [PubMed] [Google Scholar]