Skip to main content
Transactions of the American Ophthalmological Society logoLink to Transactions of the American Ophthalmological Society
. 1982;80:391–474.

The flow of aqueous humor in the human eye.

R F Brubaker
PMCID: PMC1312276  PMID: 6763801

Full text

PDF
391

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ARMALY M. F. The effect of intraocular pressure on outflow facility. Arch Ophthalmol. 1960 Jul;64:125–132. doi: 10.1001/archopht.1960.01840010127013. [DOI] [PubMed] [Google Scholar]
  2. Adler C. A., Maurice D. M., Paterson M. E. The effect of viscosity of the vehicle on the penetration of fluorescein into the human eye. Exp Eye Res. 1971 Jan;11(1):34–42. doi: 10.1016/s0014-4835(71)80062-3. [DOI] [PubMed] [Google Scholar]
  3. Anselmi P., Bron A. J., Maurice D. M. Action of drugs on the aqueous flow in man measured by fluorophotometry. Exp Eye Res. 1968 Oct;7(4):487–496. doi: 10.1016/s0014-4835(68)80002-8. [DOI] [PubMed] [Google Scholar]
  4. BALLINTINE E. J., GARNER L. L. Improvement of the co-efficient of outflow in glaucomatous eyes. Prolonged local treatment with epinephrine. Arch Ophthalmol. 1961 Sep;66:314–317. doi: 10.1001/archopht.1961.00960010316004. [DOI] [PubMed] [Google Scholar]
  5. BARANY E. H. A MATHEMATICAL FORMULATION OF INTRAOCULAR PRESSURE AS DEPENDENT ON SECRETION, ULTRAFILTRATION, BULK OUTFLOW, AND OSMOTIC REABSORPTION OF FLUID. Invest Ophthalmol. 1963 Dec;2:584–590. [PubMed] [Google Scholar]
  6. BECKER B., LEY A. P. Epinephrine and acetazolamide in the therapy of the chronic glaucomas. Am J Ophthalmol. 1958 May;45(5):639–643. [PubMed] [Google Scholar]
  7. BECKER B., PETTIT T. H., GAY A. J. Topical epinephrine therapy of open-angel glaucoma. Arch Ophthalmol. 1961 Aug;66:219–225. doi: 10.1001/archopht.1961.00960010221012. [DOI] [PubMed] [Google Scholar]
  8. BECKER B. The decline in aqueous secretion and outflow facility with age. Am J Ophthalmol. 1958 Nov;46(5 Pt 1):731–736. doi: 10.1016/0002-9394(58)91272-8. [DOI] [PubMed] [Google Scholar]
  9. BECKER B. The measurement of rate of aqueous flow with iodide. Invest Ophthalmol. 1962 Feb;1:52–58. [PubMed] [Google Scholar]
  10. BECKER B. The turnover of iodide in the rabbit eye. Arch Ophthalmol. 1961 Jun;65:832–836. doi: 10.1001/archopht.1961.01840020834017. [DOI] [PubMed] [Google Scholar]
  11. BERGGREN L. EFFECT OF PARASYMPATHOMIMETIC AND SYMPATHOMIMETIC DRUGS ON SECRETION IN VITRO BY THE CILIARY PROCESSES OF THE RABBIT EYE. Invest Ophthalmol. 1965 Feb;4:91–97. [PubMed] [Google Scholar]
  12. Berson F. G., Epstein D. L. Separate and combined effects of timolol maleate and acetazolamide in open-angle glaucoma. Am J Ophthalmol. 1981 Dec;92(6):788–791. doi: 10.1016/s0002-9394(14)75631-4. [DOI] [PubMed] [Google Scholar]
  13. Bill A. Aqueous humor dynamics in monkeys (Macaca irus and Cercopithecus ethiops). Exp Eye Res. 1971 Mar;11(2):195–206. doi: 10.1016/s0014-4835(71)80023-4. [DOI] [PubMed] [Google Scholar]
  14. Bill A. Blood circulation and fluid dynamics in the eye. Physiol Rev. 1975 Jul;55(3):383–417. doi: 10.1152/physrev.1975.55.3.383. [DOI] [PubMed] [Google Scholar]
  15. Bill A., Bárány E. H. Gross facility, facility of conventional routes, and pseudofacility of aqueous humor outflow in the cynomolgus monkey. The reduction in aqueous humor formation rate caused by moderate increments in intraocular pressure. Arch Ophthalmol. 1966 May;75(5):665–673. doi: 10.1001/archopht.1966.00970050667017. [DOI] [PubMed] [Google Scholar]
  16. Bill A. Conventional and uveo-scleral drainage of aqueous humour in the cynomolgus monkey (Macaca irus) at normal and high intraocular pressures. Exp Eye Res. 1966 Jan;5(1):45–54. doi: 10.1016/s0014-4835(66)80019-2. [DOI] [PubMed] [Google Scholar]
  17. Bill A., Hellsing K. Production and drainage of aqueous humor in the cynomolgus monkey (Macaca irus). Invest Ophthalmol. 1965 Oct;4(5):920–926. [PubMed] [Google Scholar]
  18. Bill A., Phillips C. I. Uveoscleral drainage of aqueous humour in human eyes. Exp Eye Res. 1971 Nov;12(3):275–281. doi: 10.1016/0014-4835(71)90149-7. [DOI] [PubMed] [Google Scholar]
  19. Bill A. The aqueous humor drainage mechanism in the cynomolgus monkey (Macaca irus) with evidence for unconventional routes. Invest Ophthalmol. 1965 Oct;4(5):911–919. [PubMed] [Google Scholar]
  20. Bloom J. N., Levene R. Z., Thomas G., Kimura R. Fluorophotometry and the rate of aqueous flow in man. I. Instrumentation and normal values. Arch Ophthalmol. 1976 Mar;94(3):435–443. doi: 10.1001/archopht.1976.03910030211008. [DOI] [PubMed] [Google Scholar]
  21. Blumenthal M., Best M., Galin A. Effect of ophthalmic artery perfusion pressure on ocular rigidity. Ophthalmologica. 1971;163(4):235–244. doi: 10.1159/000306650. [DOI] [PubMed] [Google Scholar]
  22. Blumenthal M., Best M., Galin M. A., Wald N. Volumetric studies of ophthalmic artery perfusion pressure and ocular rigidity. Acta Ophthalmol (Copenh) 1971;49(5):805–811. doi: 10.1111/j.1755-3768.1971.tb08681.x. [DOI] [PubMed] [Google Scholar]
  23. Brubaker R. F., Coakes R. L. Use of a xenon flash tube as the excitation source in a new slit-lamp fluorophotometer. Am J Ophthalmol. 1978 Oct;86(4):474–484. doi: 10.1016/0002-9394(78)90292-1. [DOI] [PubMed] [Google Scholar]
  24. Brubaker R. F., Ezekiel S., Chin L., Young L., Johnson S. A., Beeler G. W. The stress-strain behavior of the corneoscleral envelope of the eye. I. Development of a system for making in vivo measurements using optical interferometry. Exp Eye Res. 1975 Jul;21(1):37–46. doi: 10.1016/0014-4835(75)90055-x. [DOI] [PubMed] [Google Scholar]
  25. Brubaker R. F., Johnson S. A., Beeler G. W. The stress-strain behavior of the corneoscleral envelope of the eye. II. In vivo measurements in rhesus monkey eyes. Exp Eye Res. 1977 May;24(5):425–435. doi: 10.1016/0014-4835(77)90264-0. [DOI] [PubMed] [Google Scholar]
  26. Brubaker R. F., Kupfer C. Determination of pseudofacility in the eye of the rhesus monkey. Arch Ophthalmol. 1966 May;75(5):693–697. doi: 10.1001/archopht.1966.00970050695022. [DOI] [PubMed] [Google Scholar]
  27. Brubaker R. F., Nagataki S., Townsend D. J., Burns R. R., Higgins R. G., Wentworth W. The effect of age on aqueous humor formation in man. Ophthalmology. 1981 Mar;88(3):283–288. doi: 10.1016/s0161-6420(81)35037-4. [DOI] [PubMed] [Google Scholar]
  28. Brubaker R. F., Penniston J. T., Grotte D. A., Nagataki S. Measurement of fluorescein binding in human plasma using fluorescence polarization. Arch Ophthalmol. 1982 Apr;100(4):625–630. doi: 10.1001/archopht.1982.01030030627020. [DOI] [PubMed] [Google Scholar]
  29. Brubaker R. F., Riley F. C. The filtration coefficient of the blood-aqueous barrier. Invest Ophthalmol. 1972 Sep;11(9):752–759. [PubMed] [Google Scholar]
  30. Brubaker R. F. The effect of intraocular pressure on conventional outflow resistance in the enucleated human eye. Invest Ophthalmol. 1975 Apr;14(4):286–292. [PubMed] [Google Scholar]
  31. Brubaker R. F. The measurement of pseudofacility and true facility by constant pressure perfusion in the normal rhesus monkey eye. Invest Ophthalmol. 1970 Jan;9(1):42–52. [PubMed] [Google Scholar]
  32. Brubaker R. F., Worthen D. M. The filtration coefficient of the intraocular vasculature as measured by low-pressure perfusion in a primate eye. Invest Ophthalmol. 1973 May;12(5):321–326. [PubMed] [Google Scholar]
  33. Bucci M. G., Pecori Giraldi J. La viscoelasticità delle membrane oculari di coniglio in funzione della temperatura. Boll Ocul. 1968 Apr;47(4):236–249. [PubMed] [Google Scholar]
  34. Bucci M. G., Rispoli E. Registrazione del comportamento viscoelastico di bulbi oculari enucleati. Tecnica e risultati preliminari. Boll Ocul. 1969 Jun;48(6):417–425. [PubMed] [Google Scholar]
  35. Bucci M. G., Santillo C. La componente viscoelastica delle membrane oculari in corso di registrazione continua della produzione di umore acqueo. Boll Ocul. 1968 Mar;47(3):157–176. [PubMed] [Google Scholar]
  36. Burns R. R., Bourne W. M., Brubaker R. F. Endothelial function in patients with cornea guttata. Invest Ophthalmol Vis Sci. 1981 Jan;20(1):77–85. [PubMed] [Google Scholar]
  37. Calkins J. L., Hochheimer B. F. Retinal light exposure from ophthalmoscopes, slit lamps, and overhead surgical lamps. An analysis of potential hazards. Invest Ophthalmol Vis Sci. 1980 Sep;19(9):1009–1015. [PubMed] [Google Scholar]
  38. Chien Y., Weber G. Kinetic and binding effects of 1,N 6 -ethenoadenosine triphosphate to aspartate transcarbamylase. Biochem Biophys Res Commun. 1973 Jan 23;50(2):538–543. doi: 10.1016/0006-291x(73)90873-5. [DOI] [PubMed] [Google Scholar]
  39. Coakes R. L., Brubaker R. F. Method of measuring aqueous humor flow and corneal endothelial permeability using a fluorophotometry nomogram. Invest Ophthalmol Vis Sci. 1979 Mar;18(3):288–302. [PubMed] [Google Scholar]
  40. Coakes R. L., Brubaker R. F. The mechanism of timolol in lowering intraocular pressure. In the normal eye. Arch Ophthalmol. 1978 Nov;96(11):2045–2048. doi: 10.1001/archopht.1978.03910060433007. [DOI] [PubMed] [Google Scholar]
  41. Cunha-Vaz J. G., Maurice D. M. The active transport of fluorescein by the retinal vessels and the retina. J Physiol. 1967 Aug;191(3):467–486. doi: 10.1113/jphysiol.1967.sp008262. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. DAVSON H., MATCHETT P. A. The kinetics of penetration of the blood-aqueous barrier. J Physiol. 1953 Oct;122(1):11–32. doi: 10.1113/jphysiol.1953.sp004975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. DUKE-ELDER S., MAURICE D. M. Symbols of ocular dynamics. Br J Ophthalmol. 1957 Nov;41(11):702–703. doi: 10.1136/bjo.41.11.702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Dailey R. A., Brubaker R. F., Bourne W. M. The effects of timolol maleate and acetazolamide on the rate of aqueous formation in normal human subjects. Am J Ophthalmol. 1982 Feb;93(2):232–237. doi: 10.1016/0002-9394(82)90419-6. [DOI] [PubMed] [Google Scholar]
  45. Delori F. C., Ben-Sira I. Excitation and emission spectra of fluorescein dye in the human ocular fundus. Invest Ophthalmol. 1975 Jun;14(6):487–492. [PubMed] [Google Scholar]
  46. Delori F. C., Castany M. A., Webb R. H. Fluorescence characteristics of sodium fluorescein in plasma and whole blood. Exp Eye Res. 1978 Oct;27(4):417–425. doi: 10.1016/0014-4835(78)90020-9. [DOI] [PubMed] [Google Scholar]
  47. EISENLOHR J. E., LANGHAM M. E. The relationship between pressure and volume changes in living and dead rabbit eyes. Invest Ophthalmol. 1962 Feb;1:63–77. [PubMed] [Google Scholar]
  48. Edwards J., Hallman V. L., Perkins E. S. Perfusion studies on the monkey eye. Exp Eye Res. 1967 Oct;6(4):316–326. doi: 10.1016/s0014-4835(67)80004-6. [DOI] [PubMed] [Google Scholar]
  49. Eisenlohr J. E., Langham M. E., Maumenee A. E. MANOMETRIC STUDIES OF THE PRESSURE-VOLUME RELATIONSHIP IN LIVING AND ENUCLEATED EYES OF INDIVIDUAL HUMAN SUBJECTS. Br J Ophthalmol. 1962 Sep;46(9):536–548. doi: 10.1136/bjo.46.9.536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Ellingsen B. A., Grant W. M. The relationship of pressure and aqueous outflow in enucleated human eyes. Invest Ophthalmol. 1971 Jun;10(6):430–437. [PubMed] [Google Scholar]
  51. FRANCOIS J., RABAEY M., NEETENS A., EVENS L. Further perfusion studies on the outflow of aqueous humor in human eyes. AMA Arch Ophthalmol. 1958 May;59(5):683–691. doi: 10.1001/archopht.1958.00940060067007. [DOI] [PubMed] [Google Scholar]
  52. FRANCOIS J., RABAEY M., NEETENS A. Perfusion studies on the outflow of aqueous humor in human eyes. AMA Arch Ophthalmol. 1956 Feb;55(2):193–204. doi: 10.1001/archopht.1956.00930030195005. [DOI] [PubMed] [Google Scholar]
  53. FRIEDENWALD J. S., BECKER B. Aqueous humor dynamics; theoretical considerations. AMA Arch Ophthalmol. 1955 Dec;54(6):799–815. doi: 10.1001/archopht.1955.00930020805001. [DOI] [PubMed] [Google Scholar]
  54. Fatt I., Hedbys B. O. Flow of water in the sclera. Exp Eye Res. 1970 Oct;10(2):243–249. doi: 10.1016/s0014-4835(70)80035-5. [DOI] [PubMed] [Google Scholar]
  55. Fatt I., Shantinath K. Flow conductivity of retina and its role in retinal adhesion. Exp Eye Res. 1971 Sep;12(2):218–226. doi: 10.1016/0014-4835(71)90094-7. [DOI] [PubMed] [Google Scholar]
  56. Fontana S. T., Brubaker R. F. Volume and depth of the anterior chamber in the normal aging human eye. Arch Ophthalmol. 1980 Oct;98(10):1803–1808. doi: 10.1001/archopht.1980.01020040655013. [DOI] [PubMed] [Google Scholar]
  57. Gaasterland D., Kupfer C., Ross K., Gabelnick H. L. Studies of aqueous humor dynamics in man. 3. Measurements in young normal subjects using norepinephrine and isoproterenol. Invest Ophthalmol. 1973 Apr;12(4):267–279. [PubMed] [Google Scholar]
  58. Gaasterland D., Kupfer C., Ross K. Studies of aqueous humor dynamics in man. IV. Effects of pilocarpine upon measurements in young normal volunteers. Invest Ophthalmol. 1975 Nov;14(11):848–853. [PubMed] [Google Scholar]
  59. Gregory D., Sears M., Bausher L., Mishima H., Mead A. Intraocular pressure and aqueous flow are decreased by cholera toxin. Invest Ophthalmol Vis Sci. 1981 Mar;20(3):371–381. [PubMed] [Google Scholar]
  60. Grierson I., Lee W. R. Changes in the monkey outflow apparatus at graded levels of intraocular pressure: a qualitative analysis by light microscopy and scanning electron microscopy. Exp Eye Res. 1974 Jul;19(1):21–33. doi: 10.1016/0014-4835(74)90068-2. [DOI] [PubMed] [Google Scholar]
  61. Ham W. T., Jr, Mueller H. A., Ruffolo J. J., Jr, Clarke A. M. Sensitivity of the retina to radiation damage as a function of wavelength. Photochem Photobiol. 1979 Apr;29(4):735–743. doi: 10.1111/j.1751-1097.1979.tb07759.x. [DOI] [PubMed] [Google Scholar]
  62. Higgins R. G., Brubaker R. F. Acute effect of epinephrine on aqueous humor formation in the timolol-treated normal eye as measured by fluorophotometry. Invest Ophthalmol Vis Sci. 1980 Apr;19(4):420–423. [PubMed] [Google Scholar]
  63. Holm O. A photogrammetric method for estimation of the pupillary aqueous flow in the living human eye, I. Acta Ophthalmol (Copenh) 1968;46(2):254–277. doi: 10.1111/j.1755-3768.1968.tb05185.x. [DOI] [PubMed] [Google Scholar]
  64. Holm O., Wiebert O. A photogrammetric method for estimation of the pupillary aqueous flow in the living human eye. II. Statistical evaluation of pupillary flow measurements. Acta Ophthalmol (Copenh) 1968;46(6):1230–1242. doi: 10.1111/j.1755-3768.1968.tb05916.x. [DOI] [PubMed] [Google Scholar]
  65. Johnson S. B., Coakes R. L., Brubaker R. F. A simple photogrammetric method of measuring anterior chamber volume. Am J Ophthalmol. 1978 Apr;85(4):469–474. doi: 10.1016/s0002-9394(14)75243-2. [DOI] [PubMed] [Google Scholar]
  66. Johnson S. B., Passmore J. A., Brubaker R. F. The fluorescein distribution volume of the anterior chamber. Invest Ophthalmol Vis Sci. 1977 Jul;16(7):633–636. [PubMed] [Google Scholar]
  67. Johnstone M. A., Grant W. G. Pressure-dependent changes in structures of the aqueous outflow system of human and monkey eyes. Am J Ophthalmol. 1973 Mar;75(3):365–383. doi: 10.1016/0002-9394(73)91145-8. [DOI] [PubMed] [Google Scholar]
  68. Jones R. F., Maurice D. M. New methods of measuring the rate of aqueous flow in man with fluorescein. Exp Eye Res. 1966 Jul;5(3):208–220. doi: 10.1016/s0014-4835(66)80009-x. [DOI] [PubMed] [Google Scholar]
  69. KINSEY V. E., PALM E. Posterior and anterior chamber aqueous humor formation. AMA Arch Ophthalmol. 1955 Mar;53(3):330–344. doi: 10.1001/archopht.1955.00930010332003. [DOI] [PubMed] [Google Scholar]
  70. KINSEY V. E., REDDY D. V. An estimate of the ionic composition of the fluid secreted into the posterior chamber, inferred from a study of aqueous humor dynamics. Doc Ophthalmol. 1959;13:7–40. doi: 10.1007/BF00157905. [DOI] [PubMed] [Google Scholar]
  71. KLEINERT H. [Outflow pressure and outflow resistance]. Ber Zusammenkunft Dtsch Ophthalmol Ges. 1961;64:57–64. [PubMed] [Google Scholar]
  72. Kikuchi H., Ohtsuki K. [Intraocular penetration of sodium fluorescein administered locally. (Topical instillation, subconjunctival infection and sub-Tenon's capsular injection) (author's transl)]. Nippon Ganka Gakkai Zasshi. 1979;83(11):2045–2054. [PubMed] [Google Scholar]
  73. Kleinstein R. N., Fatt I. Pressure dependency of transcleral flow. Exp Eye Res. 1977 Apr;24(4):335–340. doi: 10.1016/0014-4835(77)90146-4. [DOI] [PubMed] [Google Scholar]
  74. Koivo A. J., Stjernschantz J. Identification of a fluorescein tracer model for determination of the flow rate of aqueous humor in the eye. Comput Biol Med. 1979;9(1):1–9. doi: 10.1016/0010-4825(79)90017-9. [DOI] [PubMed] [Google Scholar]
  75. Krakau C. E. A photoelectric method for pupillary flow measurements. Doc Ophthalmol. 1969;26:81–89. doi: 10.1007/BF00943964. [DOI] [PubMed] [Google Scholar]
  76. Kronfeld P. C. Early effects of single and repeated doses of L-epinephrine in man. Am J Ophthalmol. 1971 Dec;72(6):1058–1072. doi: 10.1016/0002-9394(71)91211-6. [DOI] [PubMed] [Google Scholar]
  77. Kupfer C., Gaasterland D., Ross K. Studies of aqueous humor dynamics in man. II. Measurements in young normal subjects using acetazolamide and L-epinephrine. Invest Ophthalmol. 1971 Jul;10(7):523–533. [PubMed] [Google Scholar]
  78. Kupfer C., Ross K. Studies of aqueous humor dynamics in man. I. Measurements in young normal subjects. Invest Ophthalmol. 1971 Jul;10(7):518–522. [PubMed] [Google Scholar]
  79. LANGHAM M. E. Influence of the intra-ocular pressure on the formation of the aqueous humour and the outflow resistance in the living eye. Br J Ophthalmol. 1959 Dec;43:705–732. doi: 10.1136/bjo.43.12.705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. LANGHAM M. E., TAYLOR C. B. The influence of superior cervical ganglionectomy on intraocular dynamics. J Physiol. 1960 Jul;152:447–458. doi: 10.1113/jphysiol.1960.sp006499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. LANGHAM M., WYBAR K. C. Fluorophotometric apparatus for the objective determination of fluorescence in the anterior chamber of the living eye. Br J Ophthalmol. 1954 Jan;38(1):52–57. doi: 10.1136/bjo.38.1.52. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. LANGLEY D., MACDONALD R. K. Clinical method of observing changes in the rate of flow of aqueous humour in the human eye. I. Normal eyes. Br J Ophthalmol. 1952 Aug;36(8):432–437. doi: 10.1136/bjo.36.8.432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. LAURENCE D. J. R. A study of the adsorption of dyes on bovine serum albumin by the method of polarization of fluorescence. Biochem J. 1952 May;51(2):168–180. doi: 10.1042/bj0510168. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Lee D. A., Brubaker R. F., Nagataki S. Effect of thymoxamine on aqueous humor formation in the normal human eye as measured by fluorophotometry. Invest Ophthalmol Vis Sci. 1981 Dec;21(6):805–811. [PubMed] [Google Scholar]
  85. Lee D. A., Brubaker R. F., Nagataki S. Effect of thymoxamine on aqueous humor formation in the normal human eye as measured by fluorophotometry. Invest Ophthalmol Vis Sci. 1981 Dec;21(6):805–811. [PubMed] [Google Scholar]
  86. Levene R. Z., Bloom J. N., Kimura R. Fluorophotometry and the rate of aqueous flow in man. II. Primary open angle glaucoma. Arch Ophthalmol. 1976 Mar;94(3):444–447. doi: 10.1001/archopht.1976.03910030220009. [DOI] [PubMed] [Google Scholar]
  87. Levene R., Hyman B. The effect of intraocular pressure on the facility of outflow. Exp Eye Res. 1969 Apr;8(2):116–121. doi: 10.1016/s0014-4835(69)80021-7. [DOI] [PubMed] [Google Scholar]
  88. Lyon C., McEwen W. K., Shepherd M. D. Ocular rigidity and decay curves analyzed by two nonlinear systems. Invest Ophthalmol. 1970 Dec;9(12):935–945. [PubMed] [Google Scholar]
  89. MAURICE D. M. A new objective fluorophotometer. Exp Eye Res. 1963 Jan;2:33–38. doi: 10.1016/s0014-4835(63)80022-6. [DOI] [PubMed] [Google Scholar]
  90. MAURICE D. M. Protein dynamics in the eye studied with labelled proteins. Am J Ophthalmol. 1959 Jan;47(1 Pt 2):361–368. doi: 10.1016/s0002-9394(14)78042-0. [DOI] [PubMed] [Google Scholar]
  91. MOSES R. A., TARKKANEN A. Tonometry; the pressure-volume relationship in the intact human eye at low pressures. Am J Ophthalmol. 1959 Jan;47(1 Pt 2):557–564. [PubMed] [Google Scholar]
  92. Macri F. J., Cevario S. J. The formation and inhibition of aqueous humor production. A proposed mechanism of action. Arch Ophthalmol. 1978 Sep;96(9):1664–1667. doi: 10.1001/archopht.1978.03910060290023. [DOI] [PubMed] [Google Scholar]
  93. Macri F. J., Cevario S. J. The induction of aqueous humor formation by the use of Ach+eserine. Invest Ophthalmol. 1973 Dec;12(12):910–916. [PubMed] [Google Scholar]
  94. Macri F. J. The pressure dependence of aqueous humor formation. Arch Ophthalmol. 1967 Nov;78(5):629–633. doi: 10.1001/archopht.1967.00980030631014. [DOI] [PubMed] [Google Scholar]
  95. Maurice D. M., Watson P. G. The distribution and movement of serum albumin in the cornea. Exp Eye Res. 1965 Dec;4(4):355–363. doi: 10.1016/s0014-4835(65)80052-5. [DOI] [PubMed] [Google Scholar]
  96. McEwen W. K., St Helen R. Rheology of the human sclera. Unifying formulation of ocular rigidity. Ophthalmologica. 1965;150(5):321–346. doi: 10.1159/000304862. [DOI] [PubMed] [Google Scholar]
  97. Mishima S. Clinical pharmacokinetics of the eye. Proctor lecture. Invest Ophthalmol Vis Sci. 1981 Oct;21(4):504–541. [PubMed] [Google Scholar]
  98. Mishima S. In vivo determination of fluorescein permeability of the corneal endothelium. Arch Ophtalmol Rev Gen Ophtalmol. 1975 Feb;35(2):191–199. [PubMed] [Google Scholar]
  99. Mishima S., Maurice D. M. [In vivo determination of the endothelial permeability to fluorescein]. Nippon Ganka Gakkai Zasshi. 1971 Jan 20;75:236–243. [PubMed] [Google Scholar]
  100. Moses R. A. Constant pressure applanation tonography with the Mackay-Marg tonometer. Arch Ophthalmol. 1966 Jul;76(1):20–24. doi: 10.1001/archopht.1966.03850010022007. [DOI] [PubMed] [Google Scholar]
  101. Moses R. A. Constant pressure applanation tonography. 3. The relationship of tonometric pressure to rate of loss of ocular volume. Arch Ophthalmol. 1967 Feb;77(2):181–184. doi: 10.1001/archopht.1967.00980020183007. [DOI] [PubMed] [Google Scholar]
  102. NIHARD P. [Influence of ocular pressure on resistance to flow of aqueous humor]. Acta Ophthalmol (Copenh) 1962;40:12–27. doi: 10.1111/j.1755-3768.1962.tb02347.x. [DOI] [PubMed] [Google Scholar]
  103. Nagataki S., Brubaker R. F. Early effect of epinephrine on aqueous formation in the normal human eye. Ophthalmology. 1981 Mar;88(3):278–282. doi: 10.1016/s0161-6420(81)35039-8. [DOI] [PubMed] [Google Scholar]
  104. Nagataki S., Brubaker R. F. Effect of pilocarpine on aqueous humor formation in human beings. Arch Ophthalmol. 1982 May;100(5):818–821. doi: 10.1001/archopht.1982.01030030822020. [DOI] [PubMed] [Google Scholar]
  105. Nagataki S., Mishima S. Aqueous humor dynamics in glaucomato-cyclitic crisis. Invest Ophthalmol. 1976 May;15(5):365–370. [PubMed] [Google Scholar]
  106. Nagataki S. [Effects of adrenergic drugs on aqueous humor dynamics in man (author's transl)]. Nippon Ganka Gakkai Zasshi. 1977 Dec 10;81(12):1795–1800. [PubMed] [Google Scholar]
  107. Neufeld A. H. Epinephrine and timolol: how do these drugs lower intraocular pressure? Ann Ophthalmol. 1981 Oct;13(10):1109–1111. [PubMed] [Google Scholar]
  108. O'Rourke J., Macri F. J., Berghoffer B. Studies in uveal physiology. I. Adaptation of isotope clearance procedures for external monitoring of anterior uveal bloodflow and aqueous humor turnover in the dog. Arch Ophthalmol. 1969 Apr;81(4):526–533. doi: 10.1001/archopht.1969.00990010528011. [DOI] [PubMed] [Google Scholar]
  109. O'Rourke J., Macri F. J. Studies in uveal physiology. II. Clinical studies of the anterior chamber clearance of isotopic tracers. Arch Ophthalmol. 1970 Oct;84(4):415–420. doi: 10.1001/archopht.1970.00990040417003. [DOI] [PubMed] [Google Scholar]
  110. O'Rourke J. Measurement of capillary function in eye diseases. Trans Am Ophthalmol Soc. 1974;72:606–649. [PMC free article] [PubMed] [Google Scholar]
  111. Oppelt W. W. Measurement of aqueous humor formation rates by posterior-anterior chamber perfusion with inulin: normal values and the effect of carbonic anhydrase inhibition. Invest Ophthalmol. 1967 Feb;6(1):76–83. [PubMed] [Google Scholar]
  112. Ota Y., Mishima S., Maurice D. M. Endothelial permeability of the living cornea to fluorescein. Invest Ophthalmol. 1974 Dec;13(12):945–949. [PubMed] [Google Scholar]
  113. Ota Y. [In vivo determination of endothelial permeability to fluorescein]. Nippon Ganka Gakkai Zasshi. 1974 Oct 10;78(10):1107–1108. [PubMed] [Google Scholar]
  114. Palestine A. G., Brubaker R. F. Pharmacokinetics of fluorescein in the vitreous. Invest Ophthalmol Vis Sci. 1981 Oct;21(4):542–549. [PubMed] [Google Scholar]
  115. Palkama A., Koivo A., Stjernschantz J. Proceedings: A fluorometric technique for measuring aqueous humour inflow in the intact rabbit eye. Exp Eye Res. 1975 Feb;20(2):177–178. doi: 10.1016/0014-4835(75)90166-9. [DOI] [PubMed] [Google Scholar]
  116. Pederson J. E., Gaasterland D. E., MacLellan H. M. Accuracy of aqueous humor flow determination by fluorophotometry. Invest Ophthalmol Vis Sci. 1978 Feb;17(2):190–195. [PubMed] [Google Scholar]
  117. Pederson J. E., Gaasterland D. E., MacLellan H. M. Uveoscleral aqueous outflow in the rhesus monkey: importance of uveal reabsorption. Invest Ophthalmol Vis Sci. 1977 Nov;16(11):1008–1007. [PubMed] [Google Scholar]
  118. Pederson J. E., Green K. Aqueous humor dynamics: a mathematical approach to measurement of facility, pseudofacility, capillary pressure, active secretion and X c . Exp Eye Res. 1973 Mar;15(3):265–276. doi: 10.1016/0014-4835(73)90146-2. [DOI] [PubMed] [Google Scholar]
  119. Pederson J. E., MacLellan H. M. Experimental retinal detachment. I. Effect of subretinal fluid composition on reabsorption rate and intraocular pressure. Arch Ophthalmol. 1982 Jul;100(7):1150–1154. doi: 10.1001/archopht.1982.01030040128023. [DOI] [PubMed] [Google Scholar]
  120. Penniston J. T. Fluorescence polarization measurement of binding of fluorescein to albumin. Exp Eye Res. 1982 Mar;34(3):435–443. doi: 10.1016/0014-4835(82)90089-6. [DOI] [PubMed] [Google Scholar]
  121. Richards J. S., Drance S. M. The effect of 2 percent epinephrine on aqueous dynamics in the human eye. Can J Ophthalmol. 1967 Oct;2(4):259–265. [PubMed] [Google Scholar]
  122. ST HELEN R., McEWEN W. K. Rheology of the human sclera. 1. Anelastic behavior. Am J Ophthalmol. 1961 Oct;52:539–548. doi: 10.1016/0002-9394(61)90014-9. [DOI] [PubMed] [Google Scholar]
  123. Schenker H. I., Yablonski M. E., Podos S. M., Linder L. Fluorophotometric study of epinephrine and timolol in human subjects. Arch Ophthalmol. 1981 Jul;99(7):1212–1216. doi: 10.1001/archopht.1981.03930020086007. [DOI] [PubMed] [Google Scholar]
  124. Schlegel W. A., Lawrence C., Staberg L. G. Viscoelastic response in the enucleated human eye. Invest Ophthalmol. 1972 Jul;11(7):593–599. [PubMed] [Google Scholar]
  125. Smith A. T., Jones D. P., Sturrock G. D., Wright P. An improved objective slit-lamp fluorophotometer using tungsten-halogen lamp excitation and synchronous detection. Br J Ophthalmol. 1977 Nov;61(11):722–725. doi: 10.1136/bjo.61.11.722. [DOI] [PMC free article] [PubMed] [Google Scholar]
  126. Sperling H. G. Are ophthalmologists exposing their patients to dangerous light levels? Invest Ophthalmol Vis Sci. 1980 Sep;19(9):989–990. [PubMed] [Google Scholar]
  127. Starr P. A. Changes in aqueous flow determined by fluorophotometry. Trans Ophthalmol Soc U K. 1966;86:639–646. [PubMed] [Google Scholar]
  128. Starr P. A. Changes in the permeability of the corneal endothelium in herpes simplex stromal keratitis. Proc R Soc Med. 1968 Jun;61(6):541–542. [PMC free article] [PubMed] [Google Scholar]
  129. Stjernschantz J., Koivo A., Palkama A. Proceedings: Effect of parasympathetic stimulation on the inflow of aqueous humour in the intact rabbit eye. Exp Eye Res. 1975 Feb;20(2):178–178. doi: 10.1016/0014-4835(75)90167-0. [DOI] [PubMed] [Google Scholar]
  130. Swigert C. J., Shepherd M. H., Lyon C. S., McEwen W. K. A comparison of tonographic-trace simulations achieved by two systems: nonlinear elastic and linear viscoelastic. IEEE Trans Biomed Eng. 1971 Mar;18(2):97–103. doi: 10.1109/tbme.1971.4502809. [DOI] [PubMed] [Google Scholar]
  131. Townsend D. J., Brubaker R. F. Immediate effect of epinephrine on aqueous formation in the normal human eye as measured by fluorophotometry. Invest Ophthalmol Vis Sci. 1980 Mar;19(3):256–266. [PubMed] [Google Scholar]
  132. Viernstein L. J., Cowan M. Static and dynamic measurements of the pressure-volume relationship in living and dead rabbit eyes. Exp Eye Res. 1969 Apr;8(2):183–192. doi: 10.1016/s0014-4835(69)80030-8. [DOI] [PubMed] [Google Scholar]
  133. WAGNER J. G., NELSON E. KINETIC ANALYSIS OF BLOOD LEVELS AND URINARY EXCRETION IN THE ABSORPTIVE PHASE AFTER SINGLE DOSES OF DRUG. J Pharm Sci. 1964 Nov;53:1392–1403. doi: 10.1002/jps.2600531126. [DOI] [PubMed] [Google Scholar]
  134. WEEKERS R., DELMARCELLE Y., GUSTIN J. Treatment of ocular hypertension by adrenalin and diverse sympathomimetic amines. Am J Ophthalmol. 1955 Nov;40(5 Pt 1):666–672. doi: 10.1016/0002-9394(55)91493-8. [DOI] [PubMed] [Google Scholar]
  135. WEEKERS R., DELMARCELLE Y. Hypotonie oculaire par réduction du débit de l'humeur aqueuse. Ophthalmologica. 1953 Jun;125(6):425–437. doi: 10.1159/000301458. [DOI] [PubMed] [Google Scholar]
  136. WEEKERS R., GRIETEN J., LAVERGNE G. [Study of the dimensions of the anterior chamber of the human eye. 1. Biometric considerations]. Ophthalmologica. 1961;142:650–662. doi: 10.1159/000304167. [DOI] [PubMed] [Google Scholar]
  137. WEEKERS R., PRIJOT E., GUSTIN J. Mesure de la résistance à l'écoulement de l'humeur aqueuse au moyen du tonomètre électronique. VI. Mode d'action de l'adrénaline dans le glaucome chronique. Ophthalmologica. 1954 Oct;128(4):213–217. doi: 10.1159/000302418. [DOI] [PubMed] [Google Scholar]
  138. Walker S. D., Brubaker R. F., Nagataki S. Hypotony and aqueous humor dynamics in myotonic dystrophy. Invest Ophthalmol Vis Sci. 1982 Jun;22(6):744–751. [PubMed] [Google Scholar]
  139. Waltman S. R., Buerk K., Foster C. S. Effects of ophthalmic ointments on intraocular penetration of topical fluorescein in rabbits and man. Am J Ophthalmol. 1974 Aug;78(2):262–264. doi: 10.1016/0002-9394(74)90087-7. [DOI] [PubMed] [Google Scholar]
  140. Waltman S. R., Kaufman H. E. A new objective slit lamp fluorophotometer. Invest Ophthalmol. 1970 Apr;9(4):247–249. [PubMed] [Google Scholar]
  141. Waltman S. R., Kaufman H. E. In vivo studies of human corneal endothelial permeability. Am J Ophthalmol. 1970 Jul;70(1):45–47. doi: 10.1016/0002-9394(70)90668-9. [DOI] [PubMed] [Google Scholar]
  142. Wentworth W. O., Brubaker R. F. Aqueous humor dynamics in a series of patients with third neuron Horner's syndrome. Am J Ophthalmol. 1981 Sep;92(3):407–415. doi: 10.1016/0002-9394(81)90533-x. [DOI] [PubMed] [Google Scholar]
  143. YTTEBORG J. Further investigations of factors influencing size of rigidity coefficient. Acta Ophthalmol (Copenh) 1960;38:643–657. doi: 10.1111/j.1755-3768.1960.tb00233.x. [DOI] [PubMed] [Google Scholar]
  144. Yablonski M. E., Zimmerman T. J., Waltman S. R., Becker B. A fluorophotometric study of the effect of topical timolol on aqueous humor dynamics. Exp Eye Res. 1978 Aug;27(2):135–142. doi: 10.1016/0014-4835(78)90083-0. [DOI] [PubMed] [Google Scholar]
  145. Zeimer R. C., Cunha-Vaz J. G. Evaluation and comparison of commercial vitreous fluorophotometers. Invest Ophthalmol Vis Sci. 1981 Dec;21(6):865–868. [PubMed] [Google Scholar]

Articles from Transactions of the American Ophthalmological Society are provided here courtesy of American Ophthalmological Society

RESOURCES