Abstract
The behavioral effects of haloperidol (0.04 to 0.16 mg/kg) and nonparalytic doses of decamethonium (0.2 to 0.8 mg/kg) were studied with operant methods that permitted the measurement of response rate, peak force of response, duration of response, and duration of the rat's head entry into the reinforcement dipper well. Type of operant response topography (forelimb press or forelimb grasp-and-pull) and peak force (low or high) required for reinforcement delivery were independent variables. The low-force, press-topography condition yielded qualitatively different profiles for the two drugs. Haloperidol increased peak force and duration of operant response, increased maximum head entry duration, and temporally dissociated forelimb and head entry behavior. Decamethonium decreased force and duration of operant response, did not appreciably affect maximum head entry duration, and did not influence the normal temporal coupling of forelimb and head entry responses. The haloperidol effects were seen as reflections of pseudo-Parkinsonism, not muscle weakness, which appeared to be the primary source of decamethonium's behavioral effects.
Full text
PDF





















Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Cutmore T. R., Beninger R. J. Do neuroleptics impair learning in schizophrenic patients? Schizophr Res. 1990 May-Jun;3(3):173–186. doi: 10.1016/0920-9964(90)90035-6. [DOI] [PubMed] [Google Scholar]
 - De Ryck M., Schallert T., Teitelbaum P. Morphine versus haloperidol catalepsy in the rat: a behavioral analysis of postural support mechanisms. Brain Res. 1980 Nov 10;201(1):143–172. doi: 10.1016/0006-8993(80)90781-7. [DOI] [PubMed] [Google Scholar]
 - Fantie B. D., Nakajima S. Operant conditioning of hippocampal theta: dissociating reward from performance deficits. Behav Neurosci. 1987 Oct;101(5):626–633. doi: 10.1037//0735-7044.101.5.626. [DOI] [PubMed] [Google Scholar]
 - Faustman W. O., Fowler S. C. Use of operant response duration to distinguish the effects of haloperidol from nonreward. Pharmacol Biochem Behav. 1981 Aug;15(2):327–329. doi: 10.1016/0091-3057(81)90196-9. [DOI] [PubMed] [Google Scholar]
 - Faustman W., Fowler S., Walker C. Time course of chronic haloperidol and clozapine upon operant rate and duration. Eur J Pharmacol. 1981 Mar 5;70(1):65–70. doi: 10.1016/0014-2999(81)90433-7. [DOI] [PubMed] [Google Scholar]
 - Ford K. E., Fowler S. C., Nail G. L. Effects of clozapine and chlorpromazine upon operant response measures in rats. Pharmacol Biochem Behav. 1979 Aug;11(2):239–241. doi: 10.1016/0091-3057(79)90021-2. [DOI] [PubMed] [Google Scholar]
 - Fowler S. C., Gramling S. E., Liao R. M. Effects of pimozide on emitted force, duration and rate of operant response maintained at low and high levels of required force. Pharmacol Biochem Behav. 1986 Sep;25(3):615–622. doi: 10.1016/0091-3057(86)90150-4. [DOI] [PubMed] [Google Scholar]
 - Fowler S. C., LaCerra M. M., Ettenberg A. Effects of haloperidol on the biophysical characteristics of operant responding: implications for motor and reinforcement processes. Pharmacol Biochem Behav. 1986 Oct;25(4):791–796. doi: 10.1016/0091-3057(86)90389-8. [DOI] [PubMed] [Google Scholar]
 - Fowler S. C., Lewis R. M., Gramling S. E., Nail G. L. Chlordiazepoxide increases the force of two topographically distinct operant responses in rats. Pharmacol Biochem Behav. 1983 Nov;19(5):787–790. doi: 10.1016/0091-3057(83)90081-3. [DOI] [PubMed] [Google Scholar]
 - Fowler S. C., Liao R. M., Skjoldager P. A new rodent model for neuroleptic-induced pseudo-parkinsonism: low doses of haloperidol increase forelimb tremor in the rat. Behav Neurosci. 1990 Jun;104(3):449–456. doi: 10.1037//0735-7044.104.3.449. [DOI] [PubMed] [Google Scholar]
 - Fowler S.C., Kirkpatrick M.A. Behavior-decrementing effects of low doses of haloperidol result from disruptions in response force and duration. Behav Pharmacol. 1989;1(2):123–132. [PubMed] [Google Scholar]
 - Jenkins H. M., Moore B. R. The form of the auto-shaped response with food or water reinforcers. J Exp Anal Behav. 1973 Sep;20(2):163–181. doi: 10.1901/jeab.1973.20-163. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Laties V. G. The role of discriminative stimuli in modulating drug action. Fed Proc. 1975 Aug;34(9):1880–1888. [PubMed] [Google Scholar]
 - Ohman R., Larsson M., Nilsson I. M., Engel J., Carlsson A. Neurometabolic and behavioural effects of haloperidol in relation to drug levels in serum and brain. Naunyn Schmiedebergs Arch Pharmacol. 1977 Sep;299(2):105–114. doi: 10.1007/BF00498552. [DOI] [PubMed] [Google Scholar]
 - POSLUNS D. An analysis of chlorpromazine-induced suppression of the avoidance response. Psychopharmacologia. 1962 Oct 31;3:361–373. doi: 10.1007/BF00408321. [DOI] [PubMed] [Google Scholar]
 - Sagar H. J., Sullivan E. V., Gabrieli J. D., Corkin S., Growdon J. H. Temporal ordering and short-term memory deficits in Parkinson's disease. Brain. 1988 Jun;111(Pt 3):525–539. doi: 10.1093/brain/111.3.525. [DOI] [PubMed] [Google Scholar]
 - Skjoldager P., Fowler S. C. Effects of pimozide, across doses and within sessions, on discriminated lever release performance in rats. Psychopharmacology (Berl) 1988;96(1):21–28. doi: 10.1007/BF02431528. [DOI] [PubMed] [Google Scholar]
 - Wolgin D. L. Forelimb placing and hopping reflexes in haloperidol- and morphine-treated cataleptic rats. Behav Neurosci. 1985 Jun;99(3):423–435. doi: 10.1037//0735-7044.99.3.423. [DOI] [PubMed] [Google Scholar]
 - ZAIMIS E. J. Motor end-plate differences as a determining factor in the mode of action of neuromuscular blocking substances. J Physiol. 1953 Nov 28;122(2):238–251. doi: 10.1113/jphysiol.1953.sp004995. [DOI] [PMC free article] [PubMed] [Google Scholar]
 
