Abstract
The semaphorins are a large group of cell surface and secreted proteins implicated in axonal pathfinding. Here we show that the secreted mouse semaphorin D (SemD) is synthesized as an inactive precursor (proSemD) and becomes repulsive for sensory and sympathetic neurites upon proteolytic cleavage. ProSemD processing can be blocked completely by an inhibitor selective for furin-like endoproteases or mutagenesis of three conserved dibasic cleavage sites. Its C-terminal pro-peptide contains a processing signal that is essential for SemD to acquire its full repulsive activity. SemD processing is regulated during the embryonic development of the mouse and determines the magnitude of its repulsive activity. Similarly to SemD, the secreted semaphorins SemA and SemE display repulsive properties that are regulated by processing. Our data suggest that differential proteolytic processing determines the repulsive potency of secreted semaphorins and implicate proteolysis as an important regulatory mechanism in axonal pathfinding.
Full Text
The Full Text of this article is available as a PDF (475.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adams R. H., Betz H., Püschel A. W. A novel class of murine semaphorins with homology to thrombospondin is differentially expressed during early embryogenesis. Mech Dev. 1996 Jun;57(1):33–45. doi: 10.1016/0925-4773(96)00525-4. [DOI] [PubMed] [Google Scholar]
 - Baird J. L., Raper J. A. A serine proteinase involved in contact mediated repulsion of retinal growth cones by DRG neurites. J Neurosci. 1995 Oct;15(10):6605–6618. doi: 10.1523/JNEUROSCI.15-10-06605.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Barr P. J. Mammalian subtilisins: the long-sought dibasic processing endoproteases. Cell. 1991 Jul 12;66(1):1–3. doi: 10.1016/0092-8674(91)90129-m. [DOI] [PubMed] [Google Scholar]
 - Behar O., Golden J. A., Mashimo H., Schoen F. J., Fishman M. C. Semaphorin III is needed for normal patterning and growth of nerves, bones and heart. Nature. 1996 Oct 10;383(6600):525–528. doi: 10.1038/383525a0. [DOI] [PubMed] [Google Scholar]
 - Bristol J. A., Freedman S. J., Furie B. C., Furie B. Profactor IX: the propeptide inhibits binding to membrane surfaces and activation by factor XIa. Biochemistry. 1994 Nov 29;33(47):14136–14143. doi: 10.1021/bi00251a024. [DOI] [PubMed] [Google Scholar]
 - Chen C., Okayama H. High-efficiency transformation of mammalian cells by plasmid DNA. Mol Cell Biol. 1987 Aug;7(8):2745–2752. doi: 10.1128/mcb.7.8.2745. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Evan G. I., Lewis G. K., Ramsay G., Bishop J. M. Isolation of monoclonal antibodies specific for human c-myc proto-oncogene product. Mol Cell Biol. 1985 Dec;5(12):3610–3616. doi: 10.1128/mcb.5.12.3610. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Fambrough D., Pan D., Rubin G. M., Goodman C. S. The cell surface metalloprotease/disintegrin Kuzbanian is required for axonal extension in Drosophila. Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):13233–13238. doi: 10.1073/pnas.93.23.13233. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Fan J., Mansfield S. G., Redmond T., Gordon-Weeks P. R., Raper J. A. The organization of F-actin and microtubules in growth cones exposed to a brain-derived collapsing factor. J Cell Biol. 1993 May;121(4):867–878. doi: 10.1083/jcb.121.4.867. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Flanagan J. G., Leder P. The kit ligand: a cell surface molecule altered in steel mutant fibroblasts. Cell. 1990 Oct 5;63(1):185–194. doi: 10.1016/0092-8674(90)90299-t. [DOI] [PubMed] [Google Scholar]
 - Gloor S., Odink K., Guenther J., Nick H., Monard D. A glia-derived neurite promoting factor with protease inhibitory activity belongs to the protease nexins. Cell. 1986 Dec 5;47(5):687–693. doi: 10.1016/0092-8674(86)90511-8. [DOI] [PubMed] [Google Scholar]
 - Hosaka M., Nagahama M., Kim W. S., Watanabe T., Hatsuzawa K., Ikemizu J., Murakami K., Nakayama K. Arg-X-Lys/Arg-Arg motif as a signal for precursor cleavage catalyzed by furin within the constitutive secretory pathway. J Biol Chem. 1991 Jul 5;266(19):12127–12130. [PubMed] [Google Scholar]
 - Jorgensen M. J., Cantor A. B., Furie B. C., Brown C. L., Shoemaker C. B., Furie B. Recognition site directing vitamin K-dependent gamma-carboxylation resides on the propeptide of factor IX. Cell. 1987 Jan 30;48(2):185–191. doi: 10.1016/0092-8674(87)90422-3. [DOI] [PubMed] [Google Scholar]
 - Kolodkin A. L., Matthes D. J., Goodman C. S. The semaphorin genes encode a family of transmembrane and secreted growth cone guidance molecules. Cell. 1993 Dec 31;75(7):1389–1399. doi: 10.1016/0092-8674(93)90625-z. [DOI] [PubMed] [Google Scholar]
 - Kolodkin A. L., Matthes D. J., O'Connor T. P., Patel N. H., Admon A., Bentley D., Goodman C. S. Fasciclin IV: sequence, expression, and function during growth cone guidance in the grasshopper embryo. Neuron. 1992 Nov;9(5):831–845. doi: 10.1016/0896-6273(92)90237-8. [DOI] [PubMed] [Google Scholar]
 - Luo Y., Raible D., Raper J. A. Collapsin: a protein in brain that induces the collapse and paralysis of neuronal growth cones. Cell. 1993 Oct 22;75(2):217–227. doi: 10.1016/0092-8674(93)80064-l. [DOI] [PubMed] [Google Scholar]
 - Luo Y., Shepherd I., Li J., Renzi M. J., Chang S., Raper J. A. A family of molecules related to collapsin in the embryonic chick nervous system. Neuron. 1995 Jun;14(6):1131–1140. doi: 10.1016/0896-6273(95)90261-9. [DOI] [PubMed] [Google Scholar]
 - Mansuy I. M., van der Putten H., Schmid P., Meins M., Botteri F. M., Monard D. Variable and multiple expression of Protease Nexin-1 during mouse organogenesis and nervous system development. Development. 1993 Dec;119(4):1119–1134. doi: 10.1242/dev.119.4.1119. [DOI] [PubMed] [Google Scholar]
 - Matrisian L. M. The matrix-degrading metalloproteinases. Bioessays. 1992 Jul;14(7):455–463. doi: 10.1002/bies.950140705. [DOI] [PubMed] [Google Scholar]
 - Matthes D. J., Sink H., Kolodkin A. L., Goodman C. S. Semaphorin II can function as a selective inhibitor of specific synaptic arborizations. Cell. 1995 May 19;81(4):631–639. doi: 10.1016/0092-8674(95)90084-5. [DOI] [PubMed] [Google Scholar]
 - McGuire P. G., Seeds N. W. Degradation of underlying extracellular matrix by sensory neurons during neurite outgrowth. Neuron. 1990 Apr;4(4):633–642. doi: 10.1016/0896-6273(90)90121-u. [DOI] [PubMed] [Google Scholar]
 - Messersmith E. K., Leonardo E. D., Shatz C. J., Tessier-Lavigne M., Goodman C. S., Kolodkin A. L. Semaphorin III can function as a selective chemorepellent to pattern sensory projections in the spinal cord. Neuron. 1995 May;14(5):949–959. doi: 10.1016/0896-6273(95)90333-x. [DOI] [PubMed] [Google Scholar]
 - Molloy S. S., Thomas L., VanSlyke J. K., Stenberg P. E., Thomas G. Intracellular trafficking and activation of the furin proprotein convertase: localization to the TGN and recycling from the cell surface. EMBO J. 1994 Jan 1;13(1):18–33. doi: 10.1002/j.1460-2075.1994.tb06231.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Monard D. Cell-derived proteases and protease inhibitors as regulators of neurite outgrowth. Trends Neurosci. 1988 Dec;11(12):541–544. doi: 10.1016/0166-2236(88)90182-8. [DOI] [PubMed] [Google Scholar]
 - Murugasu-Oei B., Balakrishnan R., Yang X., Chia W., Rodrigues V. Mutations in masquerade, a novel serine-protease-like molecule, affect axonal guidance and taste behavior in Drosophila. Mech Dev. 1996 Jun;57(1):91–101. doi: 10.1016/0925-4773(96)00537-0. [DOI] [PubMed] [Google Scholar]
 - Murugasu-Oei B., Rodrigues V., Yang X., Chia W. Masquerade: a novel secreted serine protease-like molecule is required for somatic muscle attachment in the Drosophila embryo. Genes Dev. 1995 Jan 15;9(2):139–154. doi: 10.1101/gad.9.2.139. [DOI] [PubMed] [Google Scholar]
 - Nakayama K., Watanabe T., Nakagawa T., Kim W. S., Nagahama M., Hosaka M., Hatsuzawa K., Kondoh-Hashiba K., Murakami K. Consensus sequence for precursor processing at mono-arginyl sites. Evidence for the involvement of a Kex2-like endoprotease in precursor cleavages at both dibasic and mono-arginyl sites. J Biol Chem. 1992 Aug 15;267(23):16335–16340. [PubMed] [Google Scholar]
 - Nordstrom L. A., Lochner J., Yeung W., Ciment G. The metalloproteinase stromelysin-1 (transin) mediates PC12 cell growth cone invasiveness through basal laminae. Mol Cell Neurosci. 1995 Feb;6(1):56–68. doi: 10.1006/mcne.1995.1006. [DOI] [PubMed] [Google Scholar]
 - Osterwalder T., Contartese J., Stoeckli E. T., Kuhn T. B., Sonderegger P. Neuroserpin, an axonally secreted serine protease inhibitor. EMBO J. 1996 Jun 17;15(12):2944–2953. [PMC free article] [PubMed] [Google Scholar]
 - Püschel A. W., Adams R. H., Betz H. Murine semaphorin D/collapsin is a member of a diverse gene family and creates domains inhibitory for axonal extension. Neuron. 1995 May;14(5):941–948. doi: 10.1016/0896-6273(95)90332-1. [DOI] [PubMed] [Google Scholar]
 - Püschel A. W., Adams R. H., Betz H. The sensory innervation of the mouse spinal cord may be patterned by differential expression of and differential responsiveness to semaphorins. Mol Cell Neurosci. 1996 May;7(5):419–431. doi: 10.1006/mcne.1996.0030. [DOI] [PubMed] [Google Scholar]
 - Püschel A. W. The semaphorins: a family of axonal guidance molecules? Eur J Neurosci. 1996 Jul;8(7):1317–1321. doi: 10.1111/j.1460-9568.1996.tb01593.x. [DOI] [PubMed] [Google Scholar]
 - Raper J. A., Kapfhammer J. P. The enrichment of a neuronal growth cone collapsing activity from embryonic chick brain. Neuron. 1990 Jan;4(1):21–29. doi: 10.1016/0896-6273(90)90440-q. [DOI] [PubMed] [Google Scholar]
 - Seeds N. W., Williams B. L., Bickford P. C. Tissue plasminogen activator induction in Purkinje neurons after cerebellar motor learning. Science. 1995 Dec 22;270(5244):1992–1994. doi: 10.1126/science.270.5244.1992. [DOI] [PubMed] [Google Scholar]
 - Shepherd I. T., Luo Y., Lefcort F., Reichardt L. F., Raper J. A. A sensory axon repellent secreted from ventral spinal cord explants is neutralized by antibodies raised against collapsin-1. Development. 1997 Apr;124(7):1377–1385. doi: 10.1242/dev.124.7.1377. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Shepherd I., Luo Y., Raper J. A., Chang S. The distribution of collapsin-1 mRNA in the developing chick nervous system. Dev Biol. 1996 Jan 10;173(1):185–199. doi: 10.1006/dbio.1996.0016. [DOI] [PubMed] [Google Scholar]
 - Skidgel R. A. Basic carboxypeptidases: regulators of peptide hormone activity. Trends Pharmacol Sci. 1988 Aug;9(8):299–304. doi: 10.1016/0165-6147(88)90015-6. [DOI] [PubMed] [Google Scholar]
 - Steiner D. F., Smeekens S. P., Ohagi S., Chan S. J. The new enzymology of precursor processing endoproteases. J Biol Chem. 1992 Nov 25;267(33):23435–23438. [PubMed] [Google Scholar]
 - Sumi Y., Dent M. A., Owen D. E., Seeley P. J., Morris R. J. The expression of tissue and urokinase-type plasminogen activators in neural development suggests different modes of proteolytic involvement in neuronal growth. Development. 1992 Nov;116(3):625–637. doi: 10.1242/dev.116.3.625. [DOI] [PubMed] [Google Scholar]
 - Tessier-Lavigne M., Goodman C. S. The molecular biology of axon guidance. Science. 1996 Nov 15;274(5290):1123–1133. doi: 10.1126/science.274.5290.1123. [DOI] [PubMed] [Google Scholar]
 - Varela-Echavarría A., Tucker A., Püschel A. W., Guthrie S. Motor axon subpopulations respond differentially to the chemorepellents netrin-1 and semaphorin D. Neuron. 1997 Feb;18(2):193–207. doi: 10.1016/s0896-6273(00)80261-5. [DOI] [PubMed] [Google Scholar]
 - Vey M., Schäfer W., Berghöfer S., Klenk H. D., Garten W. Maturation of the trans-Golgi network protease furin: compartmentalization of propeptide removal, substrate cleavage, and COOH-terminal truncation. J Cell Biol. 1994 Dec;127(6 Pt 2):1829–1842. doi: 10.1083/jcb.127.6.1829. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Vey M., Schäfer W., Reis B., Ohuchi R., Britt W., Garten W., Klenk H. D., Radsak K. Proteolytic processing of human cytomegalovirus glycoprotein B (gpUL55) is mediated by the human endoprotease furin. Virology. 1995 Jan 10;206(1):746–749. doi: 10.1016/s0042-6822(95)80002-6. [DOI] [PubMed] [Google Scholar]
 - Watanabe T., Murakami K., Nakayama K. Positional and additive effects of basic amino acids on processing of precursor proteins within the constitutive secretory pathway. FEBS Lett. 1993 Apr 12;320(3):215–218. doi: 10.1016/0014-5793(93)80589-m. [DOI] [PubMed] [Google Scholar]
 - Watanabe T., Nakagawa T., Ikemizu J., Nagahama M., Murakami K., Nakayama K. Sequence requirements for precursor cleavage within the constitutive secretory pathway. J Biol Chem. 1992 Apr 25;267(12):8270–8274. [PubMed] [Google Scholar]
 - Zheng M., Seidah N. G., Pintar J. E. The developmental expression in the rat CNS and peripheral tissues of proteases PC5 and PACE4 mRNAs: comparison with other proprotein processing enzymes. Dev Biol. 1997 Jan 15;181(2):268–283. doi: 10.1006/dbio.1996.8402. [DOI] [PubMed] [Google Scholar]
 - Zheng M., Streck R. D., Scott R. E., Seidah N. G., Pintar J. E. The developmental expression in rat of proteases furin, PC1, PC2, and carboxypeptidase E: implications for early maturation of proteolytic processing capacity. J Neurosci. 1994 Aug;14(8):4656–4673. doi: 10.1523/JNEUROSCI.14-08-04656.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
 
