Abstract
Innate immune-related gene expression in the major disease vector mosquito Anopheles gambiae has been analyzed following infection by the malaria parasite, Plasmodium berghei. Substantially increased levels of mRNAs encoding the antibacterial peptide defensin and a putative Gram-negative bacteria-binding protein (GNBP) are observed 20-30 h after ingestion of an infected blood-meal, at a time which indicates that this induction is a response to parasite invasion of the midgut epithelium. The induction is dependent upon the ingestion of infective, sexual-stage parasites, and is not due to opportunistic co-penetration of resident gut micro-organisms into the hemocoel. The response is activated following infection both locally (in the midgut) and systemically (in remaining tissues, presumably fat body and/or hemocytes). The observation that Plasmodium can trigger a molecularly defined immune response in the vector constitutes an important advance in our understanding of parasite-vector interactions that are potentially involved in malaria transmission, and extends knowledge of the innate immune system of insects to encompass responses to protozoan parasites.
Full Text
The Full Text of this article is available as a PDF (215.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barillas-Mury C., Charlesworth A., Gross I., Richman A., Hoffmann J. A., Kafatos F. C. Immune factor Gambif1, a new rel family member from the human malaria vector, Anopheles gambiae. EMBO J. 1996 Sep 2;15(17):4691–4701. [PMC free article] [PubMed] [Google Scholar]
- Boman H. G., Hultmark D. Cell-free immunity in insects. Annu Rev Microbiol. 1987;41:103–126. doi: 10.1146/annurev.mi.41.100187.000535. [DOI] [PubMed] [Google Scholar]
- Chalk R., Townson H., Natori S., Desmond H., Ham P. J. Purification of an insect defensin from the mosquito, Aedes aegypti. Insect Biochem Mol Biol. 1994 Apr;24(4):403–410. doi: 10.1016/0965-1748(94)90033-7. [DOI] [PubMed] [Google Scholar]
- Cociancich S., Bulet P., Hetru C., Hoffmann J. A. The inducible antibacterial peptides of insects. Parasitol Today. 1994 Apr;10(4):132–139. doi: 10.1016/0169-4758(94)90260-7. [DOI] [PubMed] [Google Scholar]
- Collins F. H., Besansky N. J. Vector biology and the control of malaria in Africa. Science. 1994 Jun 24;264(5167):1874–1875. doi: 10.1126/science.8009215. [DOI] [PubMed] [Google Scholar]
- Collins F. H., Paskewitz S. M. Malaria: current and future prospects for control. Annu Rev Entomol. 1995;40:195–219. doi: 10.1146/annurev.en.40.010195.001211. [DOI] [PubMed] [Google Scholar]
- Collins F. H. Prospects for malaria control through the genetic manipulation of its vectors. Parasitol Today. 1994 Oct;10(10):370–371. doi: 10.1016/0169-4758(94)90221-6. [DOI] [PubMed] [Google Scholar]
- Collins F. H., Sakai R. K., Vernick K. D., Paskewitz S., Seeley D. C., Miller L. H., Collins W. E., Campbell C. C., Gwadz R. W. Genetic selection of a Plasmodium-refractory strain of the malaria vector Anopheles gambiae. Science. 1986 Oct 31;234(4776):607–610. doi: 10.1126/science.3532325. [DOI] [PubMed] [Google Scholar]
- Curtis C. F. The case for malaria control by genetic manipulation of its vectors. Parasitol Today. 1994 Oct;10(10):371–374. doi: 10.1016/0169-4758(94)90222-4. [DOI] [PubMed] [Google Scholar]
- Dimarcq J. L., Hoffmann D., Meister M., Bulet P., Lanot R., Reichhart J. M., Hoffmann J. A. Characterization and transcriptional profiles of a Drosophila gene encoding an insect defensin. A study in insect immunity. Eur J Biochem. 1994 Apr 1;221(1):201–209. doi: 10.1111/j.1432-1033.1994.tb18730.x. [DOI] [PubMed] [Google Scholar]
- Dimopoulos G., Richman A., della Torre A., Kafatos F. C., Louis C. Identification and characterization of differentially expressed cDNAs of the vector mosquito, Anopheles gambiae. Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):13066–13071. doi: 10.1073/pnas.93.23.13066. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Granath W. O., Jr, Connors V. A., Tarleton R. L. Interleukin 1 activity in haemolymph from strains of the snail Biomphalaria glabrata varying in susceptibility to the human blood fluke, Schistosoma mansoni: presence, differential expression, and biological function. Cytokine. 1994 Jan;6(1):21–27. doi: 10.1016/1043-4666(94)90003-5. [DOI] [PubMed] [Google Scholar]
- Gwadz R. W., Kaslow D., Lee J. Y., Maloy W. L., Zasloff M., Miller L. H. Effects of magainins and cecropins on the sporogonic development of malaria parasites in mosquitoes. Infect Immun. 1989 Sep;57(9):2628–2633. doi: 10.1128/iai.57.9.2628-2633.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ham P. J., Albuquerque C., Smithies B., Chalk R., Klager S., Hagen H. Antibacterial peptides in insect vectors of tropical parasitic disease. Ciba Found Symp. 1994;186:140–159. doi: 10.1002/9780470514658.ch9. [DOI] [PubMed] [Google Scholar]
- Hoffmann D., Hoffmann J. A. Cellular and molecular aspects of insect immunity. Res Immunol. 1990 Nov-Dec;141(9):895–896. doi: 10.1016/0923-2494(90)90189-6. [DOI] [PubMed] [Google Scholar]
- Hoffmann J. A., Reichhart J. M., Hetru C. Innate immunity in higher insects. Curr Opin Immunol. 1996 Feb;8(1):8–13. doi: 10.1016/s0952-7915(96)80098-7. [DOI] [PubMed] [Google Scholar]
- Hultmark D. Drosophila as a model system for antibacterial peptides. Ciba Found Symp. 1994;186:107–122. doi: 10.1002/9780470514658.ch7. [DOI] [PubMed] [Google Scholar]
- Janse C. J., Waters A. P. Plasmodium berghei: the application of cultivation and purification techniques to molecular studies of malaria parasites. Parasitol Today. 1995 Apr;11(4):138–143. doi: 10.1016/0169-4758(95)80133-2. [DOI] [PubMed] [Google Scholar]
- Kang D., Romans P., Lee J. Y. Analysis of a lysozyme gene from the malaria vector mosquito, Anopheles gambiae. Gene. 1996 Oct 3;174(2):239–244. doi: 10.1016/0378-1119(96)00088-1. [DOI] [PubMed] [Google Scholar]
- Kilama W. L., Craig G. B., Jr Monofactorial inheritance of susceptibility to Plasmodium Gallinaceum in Aedes aegypti. Ann Trop Med Parasitol. 1969 Dec;63(4):419–432. doi: 10.1080/00034983.1969.11686645. [DOI] [PubMed] [Google Scholar]
- Kylsten P., Kimbrell D. A., Daffre S., Samakovlis C., Hultmark D. The lysozyme locus in Drosophila melanogaster: different genes are expressed in midgut and salivary glands. Mol Gen Genet. 1992 Apr;232(3):335–343. doi: 10.1007/BF00266235. [DOI] [PubMed] [Google Scholar]
- Lackie A. M. Immune mechanisms in insects. Parasitol Today. 1988 Apr;4(4):98–105. doi: 10.1016/0169-4758(88)90035-x. [DOI] [PubMed] [Google Scholar]
- Lee W. J., Lee J. D., Kravchenko V. V., Ulevitch R. J., Brey P. T. Purification and molecular cloning of an inducible gram-negative bacteria-binding protein from the silkworm, Bombyx mori. Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):7888–7893. doi: 10.1073/pnas.93.15.7888. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lemaitre B., Kromer-Metzger E., Michaut L., Nicolas E., Meister M., Georgel P., Reichhart J. M., Hoffmann J. A. A recessive mutation, immune deficiency (imd), defines two distinct control pathways in the Drosophila host defense. Proc Natl Acad Sci U S A. 1995 Oct 10;92(21):9465–9469. doi: 10.1073/pnas.92.21.9465. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lemaitre B., Nicolas E., Michaut L., Reichhart J. M., Hoffmann J. A. The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell. 1996 Sep 20;86(6):973–983. doi: 10.1016/s0092-8674(00)80172-5. [DOI] [PubMed] [Google Scholar]
- Loker E. S. On being a parasite in an invertebrate host: a short survival course. J Parasitol. 1994 Oct;80(5):728–747. [PubMed] [Google Scholar]
- Lowenberger C., Bulet P., Charlet M., Hetru C., Hodgeman B., Christensen B. M., Hoffmann J. A. Insect immunity: isolation of three novel inducible antibacterial defensins from the vector mosquito, Aedes aegypti. Insect Biochem Mol Biol. 1995 Jul;25(7):867–873. doi: 10.1016/0965-1748(95)00043-u. [DOI] [PubMed] [Google Scholar]
- Meis J. F., Pool G., van Gemert G. J., Lensen A. H., Ponnudurai T., Meuwissen J. H. Plasmodium falciparum ookinetes migrate intercellularly through Anopheles stephensi midgut epithelium. Parasitol Res. 1989;76(1):13–19. doi: 10.1007/BF00931065. [DOI] [PubMed] [Google Scholar]
- Paton M. G., Barker G. C., Matsuoka H., Ramesar J., Janse C. J., Waters A. P., Sinden R. E. Structure and expression of a post-transcriptionally regulated malaria gene encoding a surface protein from the sexual stages of Plasmodium berghei. Mol Biochem Parasitol. 1993 Jun;59(2):263–275. doi: 10.1016/0166-6851(93)90224-l. [DOI] [PubMed] [Google Scholar]
- Raftos D. A., Cooper E. L., Habicht G. S., Beck G. Invertebrate cytokines: tunicate cell proliferation stimulated by an interleukin 1-like molecule. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9518–9522. doi: 10.1073/pnas.88.21.9518. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Richman A. M., Bulet P., Hetru C., Barillas-Mury C., Hoffmann J. A., Kafalos F. C. Inducible immune factors of the vector mosquito Anopheles gambiae: biochemical purification of a defensin antibacterial peptide and molecular cloning of preprodefensin cDNA. Insect Mol Biol. 1996 Aug;5(3):203–210. doi: 10.1111/j.1365-2583.1996.tb00055.x. [DOI] [PubMed] [Google Scholar]
- Richman A., Kafatos F. C. Immunity to eukaryotic parasites in vector insects. Curr Opin Immunol. 1996 Feb;8(1):14–19. doi: 10.1016/s0952-7915(96)80099-9. [DOI] [PubMed] [Google Scholar]
- Rodriguez M. C., Zamudio F., Torres J. A., Gonzalez-Ceron L., Possani L. D., Rodriguez M. H. Effect of a cecropin-like synthetic peptide (Shiva-3) on the sporogonic development of Plasmodium berghei. Exp Parasitol. 1995 Jun;80(4):596–604. doi: 10.1006/expr.1995.1075. [DOI] [PubMed] [Google Scholar]
- Salazar C. E., Mills-Hamm D., Kumar V., Collins F. H. Sequence of a cDNA from the mosquito Anopheles gambiae encoding a homologue of human ribosomal protein S7. Nucleic Acids Res. 1993 Aug 25;21(17):4147–4147. doi: 10.1093/nar/21.17.4147. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seitz H. M., Maier W. A., Rottok M., Becker-Feldmann H. Concomitant infections of Anopheles stephensi with Plasmodium berghei and Serratia marcescens: additive detrimental effects. Zentralbl Bakteriol Mikrobiol Hyg A. 1987 Aug;266(1-2):155–166. doi: 10.1016/s0176-6724(87)80029-9. [DOI] [PubMed] [Google Scholar]
- Touray M. G., Warburg A., Laughinghouse A., Krettli A. U., Miller L. H. Developmentally regulated infectivity of malaria sporozoites for mosquito salivary glands and the vertebrate host. J Exp Med. 1992 Jun 1;175(6):1607–1612. doi: 10.1084/jem.175.6.1607. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tryselius Y., Samakovlis C., Kimbrell D. A., Hultmark D. CecC, a cecropin gene expressed during metamorphosis in Drosophila pupae. Eur J Biochem. 1992 Feb 15;204(1):395–399. doi: 10.1111/j.1432-1033.1992.tb16648.x. [DOI] [PubMed] [Google Scholar]
- Vaughan J. A., Hensley L., Beier J. C. Sporogonic development of Plasmodium yoelii in five anopheline species. J Parasitol. 1994 Oct;80(5):674–681. [PubMed] [Google Scholar]
- Vernick K. D., Collins F. H., Gwadz R. W. A general system of resistance to malaria infection in Anopheles gambiae controlled by two main genetic loci. Am J Trop Med Hyg. 1989 Jun;40(6):585–592. doi: 10.4269/ajtmh.1989.40.585. [DOI] [PubMed] [Google Scholar]
- Vernick K. D., Fujioka H., Seeley D. C., Tandler B., Aikawa M., Miller L. H. Plasmodium gallinaceum: a refractory mechanism of ookinete killing in the mosquito, Anopheles gambiae. Exp Parasitol. 1995 Jun;80(4):583–595. doi: 10.1006/expr.1995.1074. [DOI] [PubMed] [Google Scholar]
- Warburg A., Miller L. H. Critical stages in the development of Plasmodium in mosquitoes. Parasitol Today. 1991 Jul;7(7):179–181. doi: 10.1016/0169-4758(91)90127-a. [DOI] [PubMed] [Google Scholar]
- Zheng L., Cornel A. J., Wang R., Erfle H., Voss H., Ansorge W., Kafatos F. C., Collins F. H. Quantitative trait loci for refractoriness of Anopheles gambiae to Plasmodium cynomolgi B. Science. 1997 Apr 18;276(5311):425–428. doi: 10.1126/science.276.5311.425. [DOI] [PubMed] [Google Scholar]