Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1997 Oct 15;16(20):6301–6313. doi: 10.1093/emboj/16.20.6301

Conservation of the C.elegans tra-2 3'UTR translational control.

E Jan 1, J W Yoon 1, D Walterhouse 1, P Iannaccone 1, E B Goodwin 1
PMCID: PMC1326314  PMID: 9321409

Abstract

The Caenorhabditis elegans sex-determination gene, tra-2, is translationally regulated by two 28 nt elements (DREs) located in the 3'UTR that bind a factor called DRF. This regulation requires the laf-1 gene activity. We demonstrate that the nematode Caenorhabditis briggsae tra-2 gene and the human oncogene GLI are translationally regulated by elements that are functionally equivalent to DREs. Here, we rename the DREs to TGEs (tra-2 and GLI elements). Similarly to the C.elegans tra-2 TGEs, the C.briggsae tra-2 and GLI TGEs repress translation of a reporter transgene in a laf-1 dependent manner. Furthermore, they regulate poly(A) tail length and bind DRF. We also find that the C.elegans TGEs control translation and poly(A) tail length in C.briggsae and rodent cells. Moreover, these same organisms contain a factor that specifically associates with the C.elegans TGEs. These findings are consistent with the TGE control being present in C.briggsae and rodent cells. Three lines of evidence indicate that C.briggsae tra-2 and GLI are translationally controlled in vivo by TGEs. First, like C.elegans tra-2 TGEs, the C.briggsae tra-2 and GLI TGEs control translation and poly(A) tail lengths in C.briggsae and rodent cells, respectively. Second, the same factor in C.briggsae and mammalian cells that binds to the C.elegans tra-2 TGEs binds the C.briggsae tra-2 and GLI TGEs. Third, deletion of the GLI TGE increases GLI's ability to transform cells. These findings suggest that TGE control is conserved and regulates the expression of other mRNAs.

Full Text

The Full Text of this article is available as a PDF (410.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahringer J., Kimble J. Control of the sperm-oocyte switch in Caenorhabditis elegans hermaphrodites by the fem-3 3' untranslated region. Nature. 1991 Jan 24;349(6307):346–348. doi: 10.1038/349346a0. [DOI] [PubMed] [Google Scholar]
  2. Barnes T. M., Hodgkin J. The tra-3 sex determination gene of Caenorhabditis elegans encodes a member of the calpain regulatory protease family. EMBO J. 1996 Sep 2;15(17):4477–4484. [PMC free article] [PubMed] [Google Scholar]
  3. Barton M. K., Kimble J. fog-1, a regulatory gene required for specification of spermatogenesis in the germ line of Caenorhabditis elegans. Genetics. 1990 May;125(1):29–39. doi: 10.1093/genetics/125.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974 May;77(1):71–94. doi: 10.1093/genetics/77.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  6. Dahanukar A., Wharton R. P. The Nanos gradient in Drosophila embryos is generated by translational regulation. Genes Dev. 1996 Oct 15;10(20):2610–2620. doi: 10.1101/gad.10.20.2610. [DOI] [PubMed] [Google Scholar]
  7. Doniach T. Activity of the sex-determining gene tra-2 is modulated to allow spermatogenesis in the C. elegans hermaphrodite. Genetics. 1986 Sep;114(1):53–76. doi: 10.1093/genetics/114.1.53. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ellis R. E., Kimble J. The fog-3 gene and regulation of cell fate in the germ line of Caenorhabditis elegans. Genetics. 1995 Feb;139(2):561–577. doi: 10.1093/genetics/139.2.561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Evans T. C., Crittenden S. L., Kodoyianni V., Kimble J. Translational control of maternal glp-1 mRNA establishes an asymmetry in the C. elegans embryo. Cell. 1994 Apr 22;77(2):183–194. doi: 10.1016/0092-8674(94)90311-5. [DOI] [PubMed] [Google Scholar]
  10. Fire A. Histochemical techniques for locating Escherichia coli beta-galactosidase activity in transgenic organisms. Genet Anal Tech Appl. 1992 Oct-Dec;9(5-6):151–158. doi: 10.1016/1050-3862(92)90042-4. [DOI] [PubMed] [Google Scholar]
  11. Goodrich L. V., Johnson R. L., Milenkovic L., McMahon J. A., Scott M. P. Conservation of the hedgehog/patched signaling pathway from flies to mice: induction of a mouse patched gene by Hedgehog. Genes Dev. 1996 Feb 1;10(3):301–312. doi: 10.1101/gad.10.3.301. [DOI] [PubMed] [Google Scholar]
  12. Goodwin E. B., Hofstra K., Hurney C. A., Mango S., Kimble J. A genetic pathway for regulation of tra-2 translation. Development. 1997 Feb;124(3):749–758. doi: 10.1242/dev.124.3.749. [DOI] [PubMed] [Google Scholar]
  13. Goodwin E. B., Okkema P. G., Evans T. C., Kimble J. Translational regulation of tra-2 by its 3' untranslated region controls sexual identity in C. elegans. Cell. 1993 Oct 22;75(2):329–339. doi: 10.1016/0092-8674(93)80074-o. [DOI] [PubMed] [Google Scholar]
  14. Graham P. L., Kimble J. The mog-1 gene is required for the switch from spermatogenesis to oogenesis in Caenorhabditis elegans. Genetics. 1993 Apr;133(4):919–931. doi: 10.1093/genetics/133.4.919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Graham P. L., Schedl T., Kimble J. More mog genes that influence the switch from spermatogenesis to oogenesis in the hermaphrodite germ line of Caenorhabditis elegans. Dev Genet. 1993;14(6):471–484. doi: 10.1002/dvg.1020140608. [DOI] [PubMed] [Google Scholar]
  16. Hodgkin J. A., Brenner S. Mutations causing transformation of sexual phenotype in the nematode Caenorhabditis elegans. Genetics. 1977 Jun;86(2 Pt 1):275–287. [PMC free article] [PubMed] [Google Scholar]
  17. Hodgkin J. A genetic analysis of the sex-determining gene, tra-1, in the nematode Caenorhabditis elegans. Genes Dev. 1987 Sep;1(7):731–745. doi: 10.1101/gad.1.7.731. [DOI] [PubMed] [Google Scholar]
  18. Hodgkin J. More sex-determination mutants of Caenorhabditis elegans. Genetics. 1980 Nov;96(3):649–664. doi: 10.1093/genetics/96.3.649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hodgkin J. Sex determination compared in Drosophila and Caenorhabditis. Nature. 1990 Apr 19;344(6268):721–728. doi: 10.1038/344721a0. [DOI] [PubMed] [Google Scholar]
  20. Kennedy B. P., Aamodt E. J., Allen F. L., Chung M. A., Heschl M. F., McGhee J. D. The gut esterase gene (ges-1) from the nematodes Caenorhabditis elegans and Caenorhabditis briggsae. J Mol Biol. 1993 Feb 20;229(4):890–908. doi: 10.1006/jmbi.1993.1094. [DOI] [PubMed] [Google Scholar]
  21. Kinzler K. W., Bigner S. H., Bigner D. D., Trent J. M., Law M. L., O'Brien S. J., Wong A. J., Vogelstein B. Identification of an amplified, highly expressed gene in a human glioma. Science. 1987 Apr 3;236(4797):70–73. doi: 10.1126/science.3563490. [DOI] [PubMed] [Google Scholar]
  22. Kinzler K. W., Ruppert J. M., Bigner S. H., Vogelstein B. The GLI gene is a member of the Kruppel family of zinc finger proteins. Nature. 1988 Mar 24;332(6162):371–374. doi: 10.1038/332371a0. [DOI] [PubMed] [Google Scholar]
  23. Kuwabara P. E. A novel regulatory mutation in the C. elegans sex determination gene tra-2 defines a candidate ligand/receptor interaction site. Development. 1996 Jul;122(7):2089–2098. doi: 10.1242/dev.122.7.2089. [DOI] [PubMed] [Google Scholar]
  24. Kuwabara P. E. Interspecies comparison reveals evolution of control regions in the nematode sex-determining gene tra-2. Genetics. 1996 Oct;144(2):597–607. doi: 10.1093/genetics/144.2.597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kuwabara P. E., Kimble J. Molecular genetics of sex determination in C. elegans. Trends Genet. 1992 May;8(5):164–168. doi: 10.1016/0168-9525(92)90218-s. [DOI] [PubMed] [Google Scholar]
  26. Kuwabara P. E., Okkema P. G., Kimble J. tra-2 encodes a membrane protein and may mediate cell communication in the Caenorhabditis elegans sex determination pathway. Mol Biol Cell. 1992 Apr;3(4):461–473. doi: 10.1091/mbc.3.4.461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Lee J. J., Costlow N. A. A molecular titration assay to measure transcript prevalence levels. Methods Enzymol. 1987;152:633–648. doi: 10.1016/0076-6879(87)52070-5. [DOI] [PubMed] [Google Scholar]
  28. Mello C. C., Kramer J. M., Stinchcomb D., Ambros V. Efficient gene transfer in C.elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J. 1991 Dec;10(12):3959–3970. doi: 10.1002/j.1460-2075.1991.tb04966.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Milligan J. F., Uhlenbeck O. C. Synthesis of small RNAs using T7 RNA polymerase. Methods Enzymol. 1989;180:51–62. doi: 10.1016/0076-6879(89)80091-6. [DOI] [PubMed] [Google Scholar]
  30. Motzny C. K., Holmgren R. The Drosophila cubitus interruptus protein and its role in the wingless and hedgehog signal transduction pathways. Mech Dev. 1995 Jul;52(1):137–150. doi: 10.1016/0925-4773(95)00397-j. [DOI] [PubMed] [Google Scholar]
  31. Okkema P. G., Kimble J. Molecular analysis of tra-2, a sex determining gene in C.elegans. EMBO J. 1991 Jan;10(1):171–176. doi: 10.1002/j.1460-2075.1991.tb07933.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Orenic T. V., Slusarski D. C., Kroll K. L., Holmgren R. A. Cloning and characterization of the segment polarity gene cubitus interruptus Dominant of Drosophila. Genes Dev. 1990 Jun;4(6):1053–1067. doi: 10.1101/gad.4.6.1053. [DOI] [PubMed] [Google Scholar]
  33. Perry M. D., Li W., Trent C., Robertson B., Fire A., Hageman J. M., Wood W. B. Molecular characterization of the her-1 gene suggests a direct role in cell signaling during Caenorhabditis elegans sex determination. Genes Dev. 1993 Feb;7(2):216–228. doi: 10.1101/gad.7.2.216. [DOI] [PubMed] [Google Scholar]
  34. Roberts W. M., Douglass E. C., Peiper S. C., Houghton P. J., Look A. T. Amplification of the gli gene in childhood sarcomas. Cancer Res. 1989 Oct 1;49(19):5407–5413. [PubMed] [Google Scholar]
  35. Ruppert J. M., Kinzler K. W., Wong A. J., Bigner S. H., Kao F. T., Law M. L., Seuanez H. N., O'Brien S. J., Vogelstein B. The GLI-Kruppel family of human genes. Mol Cell Biol. 1988 Aug;8(8):3104–3113. doi: 10.1128/mcb.8.8.3104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Ruppert J. M., Vogelstein B., Kinzler K. W. The zinc finger protein GLI transforms primary cells in cooperation with adenovirus E1A. Mol Cell Biol. 1991 Mar;11(3):1724–1728. doi: 10.1128/mcb.11.3.1724. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Sallés F. J., Strickland S. Rapid and sensitive analysis of mRNA polyadenylation states by PCR. PCR Methods Appl. 1995 Jun;4(6):317–321. doi: 10.1101/gr.4.6.317. [DOI] [PubMed] [Google Scholar]
  38. Schedl T., Graham P. L., Barton M. K., Kimble J. Analysis of the role of tra-1 in germline sex determination in the nematode Caenorhabditis elegans. Genetics. 1989 Dec;123(4):755–769. doi: 10.1093/genetics/123.4.755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Schedl T., Kimble J. fog-2, a germ-line-specific sex determination gene required for hermaphrodite spermatogenesis in Caenorhabditis elegans. Genetics. 1988 May;119(1):43–61. doi: 10.1093/genetics/119.1.43. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Simon J. A., Lis J. T. A germline transformation analysis reveals flexibility in the organization of heat shock consensus elements. Nucleic Acids Res. 1987 Apr 10;15(7):2971–2988. doi: 10.1093/nar/15.7.2971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Smibert C. A., Wilson J. E., Kerr K., Macdonald P. M. smaug protein represses translation of unlocalized nanos mRNA in the Drosophila embryo. Genes Dev. 1996 Oct 15;10(20):2600–2609. doi: 10.1101/gad.10.20.2600. [DOI] [PubMed] [Google Scholar]
  42. Stringham E. G., Dixon D. K., Jones D., Candido E. P. Temporal and spatial expression patterns of the small heat shock (hsp16) genes in transgenic Caenorhabditis elegans. Mol Biol Cell. 1992 Feb;3(2):221–233. doi: 10.1091/mbc.3.2.221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Verrotti A. C., Thompson S. R., Wreden C., Strickland S., Wickens M. Evolutionary conservation of sequence elements controlling cytoplasmic polyadenylylation. Proc Natl Acad Sci U S A. 1996 Aug 20;93(17):9027–9032. doi: 10.1073/pnas.93.17.9027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Villeneuve A. M., Meyer B. J. The regulatory hierarchy controlling sex determination and dosage compensation in Caenorhabditis elegans. Adv Genet. 1990;27:117–188. doi: 10.1016/s0065-2660(08)60025-5. [DOI] [PubMed] [Google Scholar]
  45. Walterhouse D., Ahmed M., Slusarski D., Kalamaras J., Boucher D., Holmgren R., Iannaccone P. gli, a zinc finger transcription factor and oncogene, is expressed during normal mouse development. Dev Dyn. 1993 Feb;196(2):91–102. doi: 10.1002/aja.1001960203. [DOI] [PubMed] [Google Scholar]
  46. Wightman B., Ha I., Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell. 1993 Dec 3;75(5):855–862. doi: 10.1016/0092-8674(93)90530-4. [DOI] [PubMed] [Google Scholar]
  47. Zarkower D., Hodgkin J. Molecular analysis of the C. elegans sex-determining gene tra-1: a gene encoding two zinc finger proteins. Cell. 1992 Jul 24;70(2):237–249. doi: 10.1016/0092-8674(92)90099-x. [DOI] [PubMed] [Google Scholar]
  48. de Bono M., Zarkower D., Hodgkin J. Dominant feminizing mutations implicate protein-protein interactions as the main mode of regulation of the nematode sex-determining gene tra-1. Genes Dev. 1995 Jan 15;9(2):155–167. doi: 10.1101/gad.9.2.155. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES