Abstract
A method is developed to express the flux of an electron transfer reaction as a function of the conjugate force, the redox potential difference, throughout the nonlinear region. The flux can be expressed by a product of the hyperbolic sine of the force, a factor ("redox-poising parameter") determined by the redox potentials of subsystem (in certain cases by local pH's and pK's of subsystems), and some constants. This is analogous to the expression of the flux of a diffusion process by the product of its force and the concentration of the diffusing species. The redox-poising parameter corresponds to the concentration term. The expression is applied to redox chains in which electron transfers are coupled to vectorial processes such as proton translocation or electric current.
Full text
PDF















Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arata H., Nishimura M. Energetic coupling in the primary processes of photosynthesis in Chromatium. pH dependence of delayed fluorescence, electron transfer and degree of coupling. J Biochem. 1979 Feb;85(2):485–494. doi: 10.1093/oxfordjournals.jbchem.a132355. [DOI] [PubMed] [Google Scholar]
- Bunow B. Chemical reactions and membranes: a macroscopic basis for facilitated transport, chemiosmosis and active transport. Part I: Linear analysis. J Theor Biol. 1978 Nov 7;75(1):51–78. doi: 10.1016/0022-5193(78)90202-3. [DOI] [PubMed] [Google Scholar]
- Dutton P. L., Wilson D. F. Redox potentiometry in mitochondrial and photosynthetic bioenergetics. Biochim Biophys Acta. 1974 Oct 31;346(2):165–212. doi: 10.1016/0304-4173(74)90008-1. [DOI] [PubMed] [Google Scholar]
- Hill T. L., Chance B. Steady-state kinetics of models of respiratory chain enzymes with isopotential pools and conformational site enzymes. J Theor Biol. 1978 May 8;72(1):17–56. doi: 10.1016/0022-5193(78)90016-4. [DOI] [PubMed] [Google Scholar]
- Kell D. B. On the functional proton current pathway of electron transport phosphorylation. An electrodic view. Biochim Biophys Acta. 1979 Jul 3;549(1):55–99. doi: 10.1016/0304-4173(79)90018-1. [DOI] [PubMed] [Google Scholar]
- MITCHELL P. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature. 1961 Jul 8;191:144–148. doi: 10.1038/191144a0. [DOI] [PubMed] [Google Scholar]
- Mikulecky D. C., Wiegand W. A., Shiner J. S. A simple network thermodynamic method for modeling series-parallel coupled flows. I. The linear case. J Theor Biol. 1977 Dec 7;69(3):471–510. doi: 10.1016/0022-5193(77)90153-9. [DOI] [PubMed] [Google Scholar]
- Mitchell P. Possible molecular mechanisms of the protonmotive function of cytochrome systems. J Theor Biol. 1976 Oct 21;62(2):327–367. doi: 10.1016/0022-5193(76)90124-7. [DOI] [PubMed] [Google Scholar]
- Oster G. F., Perelson A. S., Katchalsky A. Network thermodynamics: dynamic modelling of biophysical systems. Q Rev Biophys. 1973 Feb;6(1):1–134. doi: 10.1017/s0033583500000081. [DOI] [PubMed] [Google Scholar]
- Racker E. The two faces of the inner mitochondrial membrane. Essays Biochem. 1970;6:1–22. [PubMed] [Google Scholar]
- Ross R. T. Bounds on rate constants and relative potentials in electron transport chains. Biochim Biophys Acta. 1977 Feb 7;459(2):321–324. doi: 10.1016/0005-2728(77)90032-9. [DOI] [PubMed] [Google Scholar]
- Rottenberg H. The thermodynamic description of enzyme-catalyzed reactions. The linear relation between the reaction rate and the affinity. Biophys J. 1973 Jun;13(6):503–511. doi: 10.1016/S0006-3495(73)86004-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schönfeld M., Neumann J. Proton conductance of the thylakoid membrane: modulation by light. FEBS Lett. 1977 Jan 15;73(1):51–54. doi: 10.1016/0014-5793(77)80013-6. [DOI] [PubMed] [Google Scholar]
- Slater E. C. Mechanism of oxidative phosphorylation. Annu Rev Biochem. 1977;46:1015–1026. doi: 10.1146/annurev.bi.46.070177.005055. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Westerhoff H. V., Scholte B. J., Hellingwerf K. J. Bacteriorhodopsin in liposomes. I. A description using irreversible thermodynamics. Biochim Biophys Acta. 1979 Sep 11;547(3):544–560. doi: 10.1016/0005-2728(79)90033-1. [DOI] [PubMed] [Google Scholar]
