Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1980 Nov;32(2):807–836. doi: 10.1016/S0006-3495(80)85018-1

Nuclear Overhauser effect and cross-relaxation rate determinations of dihedral and transannular interproton distances in the decapeptide tyrocidine A.

M C Kuo, W A Gibbons
PMCID: PMC1327240  PMID: 6266536

Abstract

The following interproton distances are reported for the decapeptide tyrocidine A in solution: (a) r(phi) distances between NH(i) and H alpha (i), (b) r(psi) distances between NH (i + 1) and H alpha (i), (c) r(phi psi) distances between NH(i + 1) and NH(i), (d) NH in equilibrium NH transannular distances, (e) H alpha in equilibrium H alpha transannular distances, (f) r x 1 distances between H alpha and H beta protons, (g) NH(i) in equilibrium H beta (i) distances, (h) NH (i + 1) in equilibrium H beta (i) distances, (i) carboxamide-backbone protons and carboxamide-side chain proton distances, (j) side chain proton-side chain proton distances. The procedures for distance calculations were: NOE ratios and calibration distances, sigma ratios and calibration distances, and correlation times and sigma parameters. The cross-relaxation parameters were obtained from the product, say, of NOE 1 leads to 2 and the monoselective relaxation rate of proton 2; the NOEs were measured by NOE difference spectroscopy. The data are consistent with a type I beta-turn/ type II' beta-turn/ approximately antiparallel beta-pleated sheet conformation of tyrocidine A in solution and the NOEs, cross-relaxation parameters, and interproton distances serve as distinguishing criteria for beta-turn and beta-pleated sheet conformations. It should be borne in mind that measurement of only r phi and r psi distances for a decapeptide only defines the ( phi, psi)-space in terms of 4(10) possible conformations; the distances b-j served to reduce the degeneracy in possible (phi, psi)-space to one tyrocidine A conformation. The latter conformation is consistent with that derived from scalar coupling constants, hydrogen bonding studies, and proton-chromophore distance measurement, and closely resembles the conformation of gramicidin S.

Full text

PDF
807

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balaram P., Bothner-By A. A., Breslow E. Nuclear magnetic resonance studies of the interaction of peptides and hormones with bovine neurophysin. Biochemistry. 1973 Nov 6;12(23):4695–4704. doi: 10.1021/bi00747a024. [DOI] [PubMed] [Google Scholar]
  2. Dygert M., Gō N., Scheraga H. A. Use of a symmetry condition to compute the conformation of gramicidin S1. Macromolecules. 1975 Nov-Dec;8(6):750–761. doi: 10.1021/ma60048a016. [DOI] [PubMed] [Google Scholar]
  3. Gibbons W. A., Beyer C. F., Dadok J., Sprecher R. F., Wyssbrod H. R. Studies of individual amino acid residues of the decapeptide tyrocidine A by proton double-resonance difference spectroscopy in the correlation mode. Biochemistry. 1975 Jan 28;14(2):420–429. doi: 10.1021/bi00673a032. [DOI] [PubMed] [Google Scholar]
  4. Glickson J. D., Gordon S. L., Pitner P., Agresti D. G., Walter R. Intramolecular 1H nuclear Overhauser effect study of the solution conformation of valinomycin in dimethyl sulfoxide. Biochemistry. 1976 Dec 28;15(26):5721–5729. doi: 10.1021/bi00671a007. [DOI] [PubMed] [Google Scholar]
  5. Jones C. R., Sikakana C. T., Hehir S. P., Gibbons W. A. Individual residue correlation times of peptides from proton relaxation parameters: application to gramicidin S. Biochem Biophys Res Commun. 1978 Aug 29;83(4):1380–1387. doi: 10.1016/0006-291x(78)91374-8. [DOI] [PubMed] [Google Scholar]
  6. Jones C. R., Sikakana C. T., Hehir S., Kuo M. C., Gibbons W. A. The quantitation of nuclear Overhauser effect methods for total conformational analysis of peptides in solution. Application to gramicidin S. Biophys J. 1978 Dec;24(3):815–832. doi: 10.1016/S0006-3495(78)85422-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Khaled M. A., Urry D. W. Nuclear Overhauser enhancement demonstration of the type II beta-turn in repeat peptides of tropoelastin. Biochem Biophys Res Commun. 1976 May 17;70(2):485–491. doi: 10.1016/0006-291x(76)91072-x. [DOI] [PubMed] [Google Scholar]
  8. Komoroski R. A., Peat I. R., Levy G. C. High field carbon-13 NMR spectroscopy. Conformational mobility in gramicidin S and frequency dependence of 13-C spin-lattice relaxation times. Biochem Biophys Res Commun. 1975 Jul 8;65(1):272–279. doi: 10.1016/s0006-291x(75)80089-1. [DOI] [PubMed] [Google Scholar]
  9. Kuo M. C., Gibbons W. A. Determination of individual side-chain conformations, tertiary conformations, and molecular topography of tyrocidine A from scalar coupling constants and chemical shifts. Biochemistry. 1979 Dec 25;18(26):5855–5867. doi: 10.1021/bi00593a016. [DOI] [PubMed] [Google Scholar]
  10. Leach S. J., Némethy G., Scheraga H. A. Use of proton nuclear Overhauser effects for the determination of the conformations of amino acid residues in oligopeptides. Biochem Biophys Res Commun. 1977 Mar 7;75(1):207–215. doi: 10.1016/0006-291x(77)91310-9. [DOI] [PubMed] [Google Scholar]
  11. Llinás M., Klein M. P., Wüthrich K. Amide proton spin-lattice relaxation in polypeptides. A field-dependence study of the proton and nitrogen dipolar interactions in alumichrome. Biophys J. 1978 Dec;24(3):849–862. doi: 10.1016/S0006-3495(78)85424-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ohnishi M., Urry D. W. Temperature dependence of amide proton chemical shifts: the secondary structures of gramicidin S and valinomycin. Biochem Biophys Res Commun. 1969 Jul 23;36(2):194–202. doi: 10.1016/0006-291x(69)90314-3. [DOI] [PubMed] [Google Scholar]
  13. Rae I. D., Stimson E. R., Scheraga H. A. Nuclear Overhauser effects and the conformation of gramicidin S. Biochem Biophys Res Commun. 1977 Jul 11;77(1):225–229. doi: 10.1016/s0006-291x(77)80186-1. [DOI] [PubMed] [Google Scholar]
  14. Sogn J. A., Gibbons W. A., Randall E. W. Study of nitrogen-15-labeled amino acids and peptides by nuclear magnetic resonance spectroscopy. Biochemistry. 1973 May 22;12(11):2100–2105. doi: 10.1021/bi00735a013. [DOI] [PubMed] [Google Scholar]
  15. Stern A., Gibbons W. A., Craig L. C. A conformational analysis of gramicidin S-A by nuclear magnetic resonance. Proc Natl Acad Sci U S A. 1968 Oct;61(2):734–741. doi: 10.1073/pnas.61.2.734. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Sykes B. D., Hull W. E., Snyder G. H. Experimental evidence for the role of cross-relaxation in proton nuclear magnetic resonance spin lattice relaxation time measurements in proteins. Biophys J. 1978 Feb;21(2):137–146. doi: 10.1016/S0006-3495(78)85514-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Venkatachalam C. M. Stereochemical criteria for polypeptides and proteins. V. Conformation of a system of three linked peptide units. Biopolymers. 1968 Oct;6(10):1425–1436. doi: 10.1002/bip.1968.360061006. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES