Abstract
Nuclear magnetic resonance (NMR) measurements provide both structural and dynamical information about the molecules in which nuclear resonances are observed. This manuscript addresses NMR relaxation of water protons in protein powder systems. Inclusion of magnetic communication between the water proton spins and protein proton spins leads to a clearer view of water molecule dynamics at the protein surface than has been previously available. We conclude that water molecule motion at the protein surface is somewhat slower than in the solute free solvent, but it is orders of magnitude faster than motions in a rigid ice lattice even in samples hydrated to levels well below what is generally thought to be the full hydration complement of the protein. The NMR relaxation data on lysozyme powders support a model that leaves adsorbed water very fluid at the protein surface with reorientational correlation times for the water shorter than nanoseconds.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Edzes H. T., Samulski E. T. Cross relaxation and spin diffusion in the proton NMR or hydrated collagen. Nature. 1977 Feb 10;265(5594):521–523. doi: 10.1038/265521a0. [DOI] [PubMed] [Google Scholar]
- Hilton B. D., Hsi E., Bryant R. G. 1H nuclear magnetic resonance relaxation of water on lysozyme powders. J Am Chem Soc. 1977 Dec 21;99(26):8483–8490. doi: 10.1021/ja00468a017. [DOI] [PubMed] [Google Scholar]
- Hsi E., Bryant R. G. Letter: Nuclear magnetic resonance relaxation in frozen lysozyme solutions. J Am Chem Soc. 1975 May 28;97(11):3220–3221. doi: 10.1021/ja00844a051. [DOI] [PubMed] [Google Scholar]
- Jentoft J. E., Bryant R. G. Nuclear magnetic resonance relaxation in lysozyme crystals. J Am Chem Soc. 1974 Jan 9;96(1):297–299. doi: 10.1021/ja00808a072. [DOI] [PubMed] [Google Scholar]
- KLOTZ I. M. Protein hydration and behavior; many aspects of protein behavior can be interpreted in terms of frozen water of hydration. Science. 1958 Oct 10;128(3328):815–822. doi: 10.1126/science.128.3328.815. [DOI] [PubMed] [Google Scholar]
- Koenig S. H., Bryant R. G., Hallenga K., Jacob G. S. Magnetic cross-relaxation among protons in protein solutions. Biochemistry. 1978 Oct 3;17(20):4348–4358. doi: 10.1021/bi00613a037. [DOI] [PubMed] [Google Scholar]
- Koenig S. H., Hallenga K., Shporer M. Protein-water interaction studied by solvent 1H, 2H, and 17O magnetic relaxation. Proc Natl Acad Sci U S A. 1975 Jul;72(7):2667–2671. doi: 10.1073/pnas.72.7.2667. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuntz I. D. Hydration of macromolecules. IV. Polypeptide conformation in frozen solutions. J Am Chem Soc. 1971 Jan 27;93(2):516–518. doi: 10.1021/ja00731a037. [DOI] [PubMed] [Google Scholar]
- Lynch L. J., Marsden K. H. NMR of absorbed systems. II. A NMR study of keratin hydration. J Chem Phys. 1969 Dec 15;51(12):5681–5691. doi: 10.1063/1.1671998. [DOI] [PubMed] [Google Scholar]
- Watenpaugh K. D., Margulis T. N., Sieker L. C., Jensen L. H. Water structure in a protein crystal: rubredoxin at 1.2 A resolution. J Mol Biol. 1978 Jun 25;122(2):175–190. doi: 10.1016/0022-2836(78)90034-7. [DOI] [PubMed] [Google Scholar]
- Yang C. H., Brown J. N., Kopple K. D. Peptide--water association in peptide crystals. Int J Pept Protein Res. 1979 Jul;14(1):12–20. doi: 10.1111/j.1399-3011.1979.tb01915.x. [DOI] [PubMed] [Google Scholar]
