Abstract
Rate constants for a number of the assembly reactions involved in forming Escherichia coli ribosome initiation complexes have been measured. These reactions were monitored in a stopped-flow device in which Rayleigh scattering and fluorescence anisotropy were followed as a function of time. Fluorescence was induced by laser excitation modulated at 50 kHz. Aminoacyl-tRNA, initiation factor 3 (IF3), and 70S ribosomes were labeled with fluorescent probes. The light-scattering and fluorescence data show that the antiassociation model for IF3 function cannot be correct. IF3 can be considered to act as an effector in an allosteric model for ribosome function. Fluorescence anisotropy stopped-flow experiments provided rate constants for the binding of IF3 to both 30S subunits and to the intact 70S ribosome. Aminoacyl-tRNA's and nucleotide triplets appear to bind rapidly to 70S ribosomes and then a slow first-order conformational change occurs.
Full text
PDF









Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- CHEN R. F., BOWMAN R. L. FLUORESCENCE POLARIZATION: MEASUREMENT WITH ULTRAVIOLET-POLARIZING FILTERS IN A SPECTROPHOTOFLUOROMETER. Science. 1965 Feb 12;147(3659):729–732. doi: 10.1126/science.147.3659.729. [DOI] [PubMed] [Google Scholar]
- Chaires J. B., Kegeles G. Sucrose density gradient sedimentation of E. coli ribosomes. Biophys Chem. 1977 Nov;7(3):173–178. doi: 10.1016/0301-4622(77)87019-1. [DOI] [PubMed] [Google Scholar]
- Chaires J. B., Kegeles G., Wahba A. J. Relaxation kinetics of E. coli ribosomes: evidence for the reaction of 30S . IF3 complex with 50S ribosomal subunits. Biophys Chem. 1979 May;9(4):405–412. [PubMed] [Google Scholar]
- Chaires J. B., Tai M., Huang C., Kegeles G., Infante A. A., Wahba A. J. Relaxation kinetics of E. coli ribosomes. Biophys Chem. 1977 Nov;7(3):179–188. doi: 10.1016/0301-4622(77)87020-8. [DOI] [PubMed] [Google Scholar]
- Debey P., Hui Bon Hoa G., Douzou P., Godefroy-Colburn T., Graffe M., Grunberg-Manago M. Ribosomal subunit interaction as studied by light scattering. Evidence of different classes of ribosome preparations. Biochemistry. 1975 Apr 22;14(8):1553–1559. doi: 10.1021/bi00679a001. [DOI] [PubMed] [Google Scholar]
- Dondon J., Godefroy-Colburn T., Graffe M., Grunberg-Manago M. IF-3 requirements for initiation complex formation with synthetic messengers in E. coli system. FEBS Lett. 1974 Sep 1;45(1):82–87. doi: 10.1016/0014-5793(74)80816-1. [DOI] [PubMed] [Google Scholar]
- Goss D. J., Parkhurst L. J. Rapid solid phase isolation of 20 specific tRNAs from Escherichia coli. J Biol Chem. 1978 Nov 10;253(21):7804–7806. [PubMed] [Google Scholar]
- Goss D. J., Parkhurst L. J. Ultra-rapid quantitative isolation of specific transfer ribonucleic acids. A solid-phase method. Biochem Biophys Res Commun. 1974 Jul 10;59(1):181–187. doi: 10.1016/s0006-291x(74)80191-9. [DOI] [PubMed] [Google Scholar]
- Goss D. J., Parkhurst L. J., Wahba A. J. Kinetics of ribosome dissociation and subunit association. The role of initiation factor IF3 as an effector. J Biol Chem. 1980 Jan 10;255(1):225–229. [PubMed] [Google Scholar]
- Gottleib M., Davis B. D., Thompson R. C. Mechanism of dissociation of ribosomes of Escherichia coli by initiation factor IF-3. Proc Natl Acad Sci U S A. 1975 Nov;72(11):4238–4242. doi: 10.1073/pnas.72.11.4238. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grunberg-Manago M., Dessen P., Pantaloni D., Godefroy-Colburn T., Wolfe A. D., Dondon J. Light-scattering studies showing the effect of initiation factors on the reversible dissociation of Escherichia coli ribosomes. J Mol Biol. 1975 May 25;94(3):461–478. doi: 10.1016/0022-2836(75)90215-6. [DOI] [PubMed] [Google Scholar]
- Grunberg-Manago M., Gros F. Initiation mechanisms of protein syntehesis. Prog Nucleic Acid Res Mol Biol. 1977;20:209–284. doi: 10.1016/s0079-6603(08)60474-2. [DOI] [PubMed] [Google Scholar]
- Görisch H., Goss D. J., Parkhurst L. J. Kinetics of ribosome dissociation and subunit association studied in a light-scattering stopped-flow apparatus. Biochemistry. 1976 Dec 28;15(26):5743–5753. doi: 10.1021/bi00671a010. [DOI] [PubMed] [Google Scholar]
- Hawley D. A., Miller M. J., Slobin L. I., Wahba A. J. The mechanism of action of initiation factor 3 in protein synthesis. I. Studies on ribosomes crosslinked with dimethylsuberimidate. Biochem Biophys Res Commun. 1974 Nov 6;61(1):329–337. doi: 10.1016/0006-291x(74)90570-1. [DOI] [PubMed] [Google Scholar]
- Hill W. E., Rossetti G. P., Van Holde K. E. Physical studies of ribosomes from Escherichia coli. J Mol Biol. 1969 Sep 14;44(2):263–277. doi: 10.1016/0022-2836(69)90174-0. [DOI] [PubMed] [Google Scholar]
- Kang C., Wells B., Cantor C. R. A fluorescent derivative of ribosomal protein S18 which permits direct observation of messenger RNA binding. J Biol Chem. 1979 Jul 25;254(14):6667–6672. [PubMed] [Google Scholar]
- Noll M., Noll H. Structural dynamics of bacterial ribosomes. V. Magnesium-dependent dissociation of tight couples into subunits: measurements of dissociation constants and exchange rates. J Mol Biol. 1976 Jul 25;105(1):111–130. doi: 10.1016/0022-2836(76)90197-2. [DOI] [PubMed] [Google Scholar]
- Pestka S. Ribonuclease sensitivity of aminoacyl-tRNA: an assay for codon recognition and interaction of aminoacryl-tRNA with 50 S subunits. Methods Enzymol. 1974;30:439–452. doi: 10.1016/0076-6879(74)30044-4. [DOI] [PubMed] [Google Scholar]
- Sabol S., Meier D., Ochoa S. Further studies with labelled polypeptide-chain-initiation factor 3 (IF-3). Eur J Biochem. 1973 Mar 1;33(2):332–340. doi: 10.1111/j.1432-1033.1973.tb02687.x. [DOI] [PubMed] [Google Scholar]
- Sabol S., Ochoa S. Ribosomal binding of labelled initiation factor F3. Nat New Biol. 1971 Dec 22;234(51):233–236. doi: 10.1038/newbio234233a0. [DOI] [PubMed] [Google Scholar]
- Sabol S., Sillero M. A., Iwasaki K., Ochoa S. Purification and properties of initiation factor F3. Nature. 1970 Dec 26;228(5278):1269–1273. doi: 10.1038/2281269a0. [DOI] [PubMed] [Google Scholar]
- Schiff N., Miller M. J., Wahba A. J. Purification and properties of chain initiation factor 3 from T4-infected and uninfected Escherichia coli MRE 600. Stimulation of translation of synthetic and natural messengers. J Biol Chem. 1974 Jun 25;249(12):3797–3802. [PubMed] [Google Scholar]
- Sobura J. E., Chowdhury M. R., Hawley D. A., Wahba A. J. Requirement of chain initiation factor 3 and ribosomal protein S1 in translation of synthetic and natural messenger RNA. Nucleic Acids Res. 1977 Jan;4(1):17–29. doi: 10.1093/nar/4.1.17. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thibault J., Chestier A., Vidal D., Gros F. Interaction of the radioactive translation initiation factor IF 3 with ribosomes. Biochimie. 1972;54(7):829–835. doi: 10.1016/s0300-9084(72)80003-8. [DOI] [PubMed] [Google Scholar]
- WEBER G. Polarization of the fluorescence of macromolecules. I. Theory and experimental method. Biochem J. 1952 May;51(2):145–155. doi: 10.1042/bj0510145. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wahba A. J., Miller M. J. Chain initiation factors from Escherichia coli. Methods Enzymol. 1974;30:3–18. doi: 10.1016/0076-6879(74)30003-1. [DOI] [PubMed] [Google Scholar]
- Wishnia A., Boussert A., Graffe M., Dessen P. H., Grunberg-Manago M. Kinetics of the reversible association of ribosomal subunits: stopped-flow studies of the rate law and of the effect of Mg2+. J Mol Biol. 1975 Apr 25;93(4):499–415. doi: 10.1016/0022-2836(75)90242-9. [DOI] [PubMed] [Google Scholar]
- Wolfe A. D., Dessen P., Pantaloni D. Direct measurement and kinetic analysis of the association of E. coli ribosomal subunits. FEBS Lett. 1973 Nov 15;37(1):112–116. doi: 10.1016/0014-5793(73)80437-5. [DOI] [PubMed] [Google Scholar]
- Zitomer R. S., Flaks J. G. Magnesium dependence and equilibrium of the Escherichia coli ribosomal subunit association. J Mol Biol. 1972 Nov 14;71(2):263–279. doi: 10.1016/0022-2836(72)90350-6. [DOI] [PubMed] [Google Scholar]