Abstract
X-ray edge absorption of copper and extended fine structure studies of both copper and iron centers have been made of cytochrome oxidase from beef heart, Paracoccus dentrificans, and HB-8 thermophilic bacteria (1-2.5 mM in heme). The desired redox state (fully oxidized, reduced CO, mixed valence formate and CO) in the x-ray beam was controlled by low temperature (-140 degrees C) and was continuously monitored by simultaneous optical spectroscopy and by electron paramagnetic resonance (EPR) monitoring every 30 min of x-ray exposure. The structure of the active site, a cytochrome a3-copper pair in fully oxidized and in mixed valence formate states where they are spin coupled, contains a sulphur bridge with three ligands 2.60 +/- 0.03 A from Fea3 and 2.18 +/- 0.03 A from Cua3. The distance between Fea3 and Cua3 is 3.75 +/- 0.05 A, making the sulphur bond angle 103 degrees reasonable for sp3 sulphur bonding. The Fea3 first shell has four typical heme nitrogens (2.01 +/- 0.03 A) with a proximal nitrogen at 2.14 +/- 0.03 A. The sixth ligand is the bridging sulphur. The Cua3 first shell is identical to oxidized stellacyanin containing two nitrogens and a bridging sulphur. Upon reduction with CO, the active site is identical to reduced stellacyanin for the Cua3 first shell and contains the sulphur that forms the bridge in fully oxidized and mixed valence formate states. The Fea3 first shell is identical to oxyhemoglobin but has CO instead of O2. The other redox centers, Fea and the other "EPR detectable" Cu are not observed in higher shells of Fea3. Fea has six equidistant nitrogens and Cua has one (or two) nitrogens and three (or two) sulphurs with typical distances; these ligands change only slight on reduction. These structures afford the basis for an oxygen reduction mechanism involving oxy- and peroxy intermediates.
Full text
PDF

































Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aasa R., Albracht P. J., Falk K. E., Lanne B., Vänngard T. EPR signals from cytochrome c oxidase. Biochim Biophys Acta. 1976 Feb 13;422(2):260–272. doi: 10.1016/0005-2744(76)90137-6. [DOI] [PubMed] [Google Scholar]
- Andréasson L. E., Brändén R., Reinhammar B. Kinetic studies of Rhus vernicifera laccase. Evidence for multi-electron transfer and an oxygen intermediate in the reoxidation reaction. Biochim Biophys Acta. 1976 Jul 8;438(2):370–379. doi: 10.1016/0005-2744(76)90254-0. [DOI] [PubMed] [Google Scholar]
- Antonini E., Brunori M., Colosimo A., Greenwood C., Wilson M. T. Oxygen "pulsed" cytochrome c oxidase: functional properties and catalytic relevance. Proc Natl Acad Sci U S A. 1977 Aug;74(8):3128–3132. doi: 10.1073/pnas.74.8.3128. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Antonini E., Brunori M., Greenwood C., Malmström B. G. Catalytic mechanism of cytochrome oxidase. Nature. 1970 Dec 5;228(5275):936–937. doi: 10.1038/228936a0. [DOI] [PubMed] [Google Scholar]
- Beinert H., Shaw R. W., Hansen R. E., Hartzell C. R. Studies on the origin of the near-infrared (800-900 nm) absorption of cytochrome c oxidase. Biochim Biophys Acta. 1980 Jul 8;591(2):458–470. doi: 10.1016/0005-2728(80)90176-0. [DOI] [PubMed] [Google Scholar]
- Beinert H., Shaw R. W. On the identity of the high spin heme components of cytochrome c oxidase. Biochim Biophys Acta. 1977 Oct 12;462(1):121–130. doi: 10.1016/0005-2728(77)90194-3. [DOI] [PubMed] [Google Scholar]
- Bergaman C., Gandvik E. K., Nyman P. O., Strid L. The amino acid sequence of Stellacyanin from the lacquer tree. Biochem Biophys Res Commun. 1977 Aug 8;77(3):1052–1059. doi: 10.1016/s0006-291x(77)80084-3. [DOI] [PubMed] [Google Scholar]
- CASTOR L. N., CHANCE B. Photochemical action spectra of carbon monoxide-inhibited respiration. J Biol Chem. 1955 Nov;217(1):453–465. [PubMed] [Google Scholar]
- CHANCE B. The carbon monoxide compounds of the cytochrome oxidases. II. Photodissociation spectra. J Biol Chem. 1953 May;202(1):397–406. [PubMed] [Google Scholar]
- CHANCE B. The carbon monoxide compounds of the cytochrome oxidases. II. Photodissociation spectra. J Biol Chem. 1953 May;202(1):397–406. [PubMed] [Google Scholar]
- Chance B., Angiolillo P., Yang E. K., Powers L. Identification and assay of synchrotron radiation-induced alterations on metalloenzymes and proteins. FEBS Lett. 1980 Apr 7;112(2):178–182. doi: 10.1016/0014-5793(80)80174-8. [DOI] [PubMed] [Google Scholar]
- Chance B., Graham N., Legallais V. Low temperature trapping method for cytochrome oxidase oxygen intermediates. Anal Biochem. 1975 Aug;67(2):552–579. doi: 10.1016/0003-2697(75)90331-0. [DOI] [PubMed] [Google Scholar]
- Chance B., Leigh J. S., Jr Oxygen intermediates and mixed valence states of cytochrome oxidase: infrared absorption difference spectra of compounds A, B, and C of cytochrome oxidase and oxygen. Proc Natl Acad Sci U S A. 1977 Nov;74(11):4777–4780. doi: 10.1073/pnas.74.11.4777. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chance B., Saronio C., Leigh J. S., Jr Compound C2, a product of the reaction of oxygen and the mixed-valence state of cytochrome oxidase. Optical evidence for a type-I copper. Biochem J. 1979 Mar 1;177(3):931–941. doi: 10.1042/bj1770931. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chance B., Saronio C., Leigh J. S., Jr Functional intermediates in reaction of cytochrome oxidase with oxygen. Proc Natl Acad Sci U S A. 1975 Apr;72(4):1635–1640. doi: 10.1073/pnas.72.4.1635. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chance B., Saronio C., Leigh J. S., Jr, Ingledew W. J., King T. E. Low-temperature kinetics of the reaction of oxygen and solubilized cytochrome oxidase. Biochem J. 1978 Jun 1;171(3):787–798. doi: 10.1042/bj1710787. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chance B. The reactivity of haemoproteins and cytochromes. Biochem J. 1967 Apr;103(1):1–18. doi: 10.1042/bj1030001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Collins D. M., Countryman R., Hoard J. L. Stereochemistry of low-spin iron porphyrins. I. Bis(imidazole)- , , , -tetraphenylporphinatoiron(3) chloride. J Am Chem Soc. 1972 Mar 22;94(6):2066–2072. doi: 10.1021/ja00761a045. [DOI] [PubMed] [Google Scholar]
- De Fonseka K., Chance B. Oxygen kinetics of frozen cytochrome oxidase. The capacity of the oxygen pocket. Biochem J. 1980 Feb 1;185(2):527–530. doi: 10.1042/bj1850527. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Denis M. The involvement of the fully oxidized state in cytochrome oxidase reaction with oxygen studied with the 655 and nm band as a probe. FEBS Lett. 1977 Dec 15;84(2):296–298. doi: 10.1016/0014-5793(77)80710-2. [DOI] [PubMed] [Google Scholar]
- Eisenberger P., Shulman R. G., Brown G. S., Ogawa S. Structure-function relations in hemoglobin as determined by x-ray absorption spectroscopy. Proc Natl Acad Sci U S A. 1976 Feb;73(2):491–495. doi: 10.1073/pnas.73.2.491. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eisenberger P., Shulman R. G., Kincaid B. M., Brown G. S., Ogawa S. Extended X-ray absorption fine structure determination of iron nitrogen distances in haemoglobin. Nature. 1978 Jul 6;274(5666):30–34. doi: 10.1038/274030a0. [DOI] [PubMed] [Google Scholar]
- Hartzell C. R., Beinert H. Components of cytochrome c oxidase detectable by EPR spectroscopy. Biochim Biophys Acta. 1974 Dec 19;368(3):318–338. doi: 10.1016/0005-2728(74)90178-9. [DOI] [PubMed] [Google Scholar]
- Hershberg R. D., Chance B. Optical and magnetic resonance studies of formate binding to horse liver catalase and sperm whale myoglobin. Biochemistry. 1975 Aug 26;14(17):3885–3891. doi: 10.1021/bi00688a023. [DOI] [PubMed] [Google Scholar]
- Hoard J. L. Stereochemistry of hemes and other metalloporphyrins. Science. 1971 Dec 24;174(4016):1295–1302. doi: 10.1126/science.174.4016.1295. [DOI] [PubMed] [Google Scholar]
- Hoffman B. M., Roberts J. E., Swanson M., Speck S. H., Margoliash E. Copper electron-nuclear double resonance of cytochrome c oxidase. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1452–1456. doi: 10.1073/pnas.77.3.1452. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ludwig B., Schatz G. A two-subunit cytochrome c oxidase (cytochrome aa3) from Paracoccus dentrificans. Proc Natl Acad Sci U S A. 1980 Jan;77(1):196–200. doi: 10.1073/pnas.77.1.196. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marcus M., Powers L. S., Storm A. R., Kincaid B. M., Chance B. Curved-crystal (LiF) x-ray focussing array for fluorescence EXAFS in dilute samples. Rev Sci Instrum. 1980 Aug;51(8):1023–1029. doi: 10.1063/1.1136373. [DOI] [PubMed] [Google Scholar]
- Mims W. B., Peisach J., Shaw R. W., Beinert H. Electron spin echo studies of cytochrome c oxidase. J Biol Chem. 1980 Jul 25;255(14):6843–6846. [PubMed] [Google Scholar]
- Nicholls P., van Buuren K. J., van Gelder B. F. Biochemical and biophysical studies on cytochrome aa 3 . 8. Effect of cyanide on the catalytic activity. Biochim Biophys Acta. 1972 Sep 20;275(3):279–287. doi: 10.1016/0005-2728(72)90208-3. [DOI] [PubMed] [Google Scholar]
- Perutz M. F. Nature of haem-haem interaction. Nature. 1972 Jun 30;237(5357):495–499. doi: 10.1038/237495a0. [DOI] [PubMed] [Google Scholar]
- Perutz M. F. Structure and mechanism of haemoglobin. Br Med Bull. 1976 Sep;32(3):195–208. doi: 10.1093/oxfordjournals.bmb.a071363. [DOI] [PubMed] [Google Scholar]
- Perutz M. F. The Croonian Lecture, 1968. The haemoglobin molecule. Proc R Soc Lond B Biol Sci. 1969 May 20;173(1031):113–140. doi: 10.1098/rspb.1969.0043. [DOI] [PubMed] [Google Scholar]
- Takano T., Kallai O. B., Swanson R., Dickerson R. E. The structure of ferrocytochrome c at 2.45 A resolution. J Biol Chem. 1973 Aug 10;248(15):5234–5255. [PubMed] [Google Scholar]
- Takano T. Structure of myoglobin refined at 2-0 A resolution. I. Crystallographic refinement of metmyoglobin from sperm whale. J Mol Biol. 1977 Mar 5;110(3):537–568. doi: 10.1016/s0022-2836(77)80111-3. [DOI] [PubMed] [Google Scholar]
- Tullius T. D., Frank P., Hodgson K. O. Characterization of the blue copper site in oxidized azurin by extended x-ray absorption fine structure: Determination of a short Cu-S distance. Proc Natl Acad Sci U S A. 1978 Sep;75(9):4069–4073. doi: 10.1073/pnas.75.9.4069. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vanderkooi J. M., Landesberg R., Hayden G. W., Owen C. S. Metal-free and metal-substituted cytochromes c. Use in characterization of the cytochrome c binding site. Eur J Biochem. 1977 Dec 1;81(2):339–347. doi: 10.1111/j.1432-1033.1977.tb11957.x. [DOI] [PubMed] [Google Scholar]
- YONETANI T. Studies on cytochrome oxidase. I. Absolute and difference absorption spectra. J Biol Chem. 1960 Mar;235:845–852. [PubMed] [Google Scholar]

