Abstract
Under various physiological and nonphysiological conditions, the intramembranous particles, as seen by freeze-fracture electron microscopy, may be in various degrees of aggregation. To compare various schemes for the measurement of the degree of aggregation, a computer program has been used to generate simulated aggregations. A simple and adequate technique for quantifying the degree of aggregation, which is practical for the electron microscopist, is presented.
Full text
PDF















Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abbas A. K., Ault K. A., Karnovsky M. J., Unanue E. R. Non-random distribution of surface immunoglobulins on murine B lymphocytes. J Immunol. 1975 Apr;114(4):1197–1204. [PubMed] [Google Scholar]
- Copps T. P., Chelack W. S., Petkau A. Variation in distribution of membrane particles in Acholeplasma laidlawii B with pH. J Ultrastruct Res. 1976 Apr;55(1):1–3. doi: 10.1016/s0022-5320(76)80076-7. [DOI] [PubMed] [Google Scholar]
- Elgsaeter A., Branton D. Intramembrane particle aggregation in erythrocyte ghosts. I. The effects of protein removal. J Cell Biol. 1974 Dec;63(3):1018–1036. doi: 10.1083/jcb.63.3.1018. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Finegold L. Cell membrane fluidity: molecular modeling of particle aggregations seen in electron microscopy. Biochim Biophys Acta. 1976 Oct 5;448(2):393–398. doi: 10.1016/0005-2736(76)90252-2. [DOI] [PubMed] [Google Scholar]
- Finegold L., Donnell J. T. Maximum density of random placing of membrane particles. Nature. 1979 Mar 29;278(5703):443–445. doi: 10.1038/278443a0. [DOI] [PubMed] [Google Scholar]
- Gershon N. D., Demsey A., Stackpole C. W. Analysis of local order in the spatial distribution of cell surface molecular assemblies. Exp Cell Res. 1979 Aug;122(1):115–126. doi: 10.1016/0014-4827(79)90566-4. [DOI] [PubMed] [Google Scholar]
- Irimura T., Nakajima M., Hirano H., Osawa T. Distribution of ferritin-conjugated lectins on sialidase-treated membranes of human erythrocytes. Biochim Biophys Acta. 1975 Dec 1;413(2):192–201. doi: 10.1016/0005-2736(75)90103-0. [DOI] [PubMed] [Google Scholar]
- Mehlhorn R. J., Packer L. Analysis of freeze-fracture electron micrographs by a computer-based technique. Biophys J. 1976 Jun;16(6):613–625. doi: 10.1016/S0006-3495(76)85716-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pearson R. P., Hui S. W., Stewart T. P. Correlative statistical analysis and computer modelling of intramembraneous particle distributions in human erythrocyte membranes. Biochim Biophys Acta. 1979 Nov 2;557(2):265–282. doi: 10.1016/0005-2736(79)90326-2. [DOI] [PubMed] [Google Scholar]
- Perelson A. S. Spatial distribution of surface immunoglobulin on B lymphocytes. Local ordering. Exp Cell Res. 1978 Mar 15;112(2):309–321. doi: 10.1016/0014-4827(78)90214-8. [DOI] [PubMed] [Google Scholar]
- Romano E. L., Stolinski C., Hughes-Jones N. C. Distribution and mobility of the A, D and c antigens on human red cell membranes: studies with a gold-labelled antiglobulin reagent. Br J Haematol. 1975 Aug;30(4):507–516. doi: 10.1111/j.1365-2141.1975.tb01865.x. [DOI] [PubMed] [Google Scholar]
- Weinstein R. S. Changes in plasma membrane structure associated with malignant transformation in human urinary bladder epithelium. Cancer Res. 1976 Jul;36(7 Pt 2):2518–2524. [PubMed] [Google Scholar]