Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1981 Dec;36(3):715–722. doi: 10.1016/S0006-3495(81)84760-1

Dynamics of potassium ion currents in squid axon membrane. A re-examination.

J W Moore, S H Young
PMCID: PMC1327654  PMID: 6275921

Abstract

The original experiments of Cole and Moore (1960. Biophys. J. 1:161-202.), using conditioning and test membrane potentials to examine the dynamics of the potassium channel conductance in the squid axon, have been extended to test voltage levels by the use of tetrodotoxin to block the sodium conductance. The potassium currents for test voltage levels from -20 to +85 mV were superposable by translation along the time axis for all conditions tested: (a) with depolarizing conditioning voltages; (b) with hyperpolarizing conditioning voltages; and (c) in normal and in high potassium external media. The only deviations from superposition seen were when the internal sodium concentration was abnormally high and the potassium currents showed saturation at high levels of depolarization. Some restoration toward normal kinetics could be obtained by rapidly repeated depolarizations.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adelman W. J., Jr, Palti Y., Senft J. P. Potassium ion accumulation in a periaxonal space and its effect on the measurement of membrane potassium ion conductance. J Membr Biol. 1973 Nov 8;13(4):387–410. doi: 10.1007/BF01868237. [DOI] [PubMed] [Google Scholar]
  2. Begenisich T. Conditioning hyperpolarization-induced delays in the potassium channels of myelinated nerve. Biophys J. 1979 Aug;27(2):257–265. doi: 10.1016/S0006-3495(79)85215-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bezanilla F., Armstrong C. M. Negative conductance caused by entry of sodium and cesium ions into the potassium channels of squid axons. J Gen Physiol. 1972 Nov;60(5):588–608. doi: 10.1085/jgp.60.5.588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. COLE K. S., MOORE J. W. Ionic current measurements in the squid giant axon membrane. J Gen Physiol. 1960 Sep;44:123–167. doi: 10.1085/jgp.44.1.123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. FRANKENHAEUSER B., HODGKIN A. L. The after-effects of impulses in the giant nerve fibres of Loligo. J Physiol. 1956 Feb 28;131(2):341–376. doi: 10.1113/jphysiol.1956.sp005467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. French R. J., Wells J. B. Sodium ions as blocking agents and charge carriers in the potassium channel of the squid giant axon. J Gen Physiol. 1977 Dec;70(6):707–724. doi: 10.1085/jgp.70.6.707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. HODGKIN A. L., HUXLEY A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952 Aug;117(4):500–544. doi: 10.1113/jphysiol.1952.sp004764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hahin R., Goldman L. Initial conditions and the kinetics of the sodium conductance in Myxicola giant axons. I. effects on the time-course of the sodium conductance. J Gen Physiol. 1978 Dec;72(6):863–877. doi: 10.1085/jgp.72.6.863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hill T. L., Chen Y. D. On the theory of ion transport across the nerve membrane. V. Two models for the Cole-Moore K + hyperpolarization delay. Biophys J. 1972 Aug;12(8):960–976. doi: 10.1016/S0006-3495(72)86137-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Joyner R. W., Moore J. W. Computer controlled voltage clamp experiments. Ann Biomed Eng. 1973 Mar;1(3):368–380. doi: 10.1007/BF02407676. [DOI] [PubMed] [Google Scholar]
  11. Moore J. W., Narahashi T. Tetrodotoxin's highly selective blockage of an ionic channel. Fed Proc. 1967 Nov-Dec;26(6):1655–1663. [PubMed] [Google Scholar]
  12. Moore J. W., Ramón F., Joyner R. W. Axon voltage-clamp simulations. II. Double sucrose-gap method. Biophys J. 1975 Jan;15(1):25–35. doi: 10.1016/S0006-3495(75)85789-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Palti Y., Ganot G., Stämpfli R. Effect of conditioning potential on potassium current kinetics in the frog node. Biophys J. 1976 Mar;16(3):261–273. doi: 10.1016/S0006-3495(76)85686-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Schauf C. L., Pencek T. L., Davis F. A. Potassium current kinetics in Myxicola axons. Effects of conditioning prepulses. J Gen Physiol. 1976 Oct;68(4):397–403. doi: 10.1085/jgp.68.4.397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. TAYLOR R. E., MOORE J. W., COLE K. S. Analysis of certain errors in squid axon voltage clamp measurements. Biophys J. 1960 Nov;1:161–202. doi: 10.1016/s0006-3495(60)86882-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Young S. H., Moore J. W. Potassium ion currents in the crayfish giant axon. Dynamic characteristics. Biophys J. 1981 Dec;36(3):723–733. doi: 10.1016/S0006-3495(81)84761-3. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES