Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1979 Jan;25(1):87–105. doi: 10.1016/s0006-3495(79)85279-0

A Network Thermodynamic Approach to Compartmental Analysis

Na+ Transients in Frog Skin

D C Mikulecky, E G Huf, S R Thomas
PMCID: PMC1328449  PMID: 262387

Abstract

We introduce a general network thermodynamic method for compartmental analysis which uses a compartmental model of sodium flows through frog skin as an illustrative example (Huf and Howell, 1974a). We use network thermodynamics (Mikulecky et al., 1977b) to formulate the problem, and a circuit simulation program (ASTEC 2, SPICE2, or PCAP) for computation. In this way, the compartment concentrations and net fluxes between compartments are readily obtained for a set of experimental conditions involving a square-wave pulse of labeled sodium at the outer surface of the skin. Qualitative features of the influx at the outer surface correlate very well with those observed for the short circuit current under another similar set of conditions by Morel and LeBlanc (1975). In related work, the compartmental model is used as a basis for simulation of the short circuit current and sodium flows simultaneously using a two-port network (Mikulecky et al., 1977a, and Mikulecky et al., A network thermodynamic model for short circuit current transients in frog skin. Manuscript in preparation; Gary-Bobo et al., 1978). The network approach lends itself to computation of classic compartmental problems in a simple manner using circuit simulation programs (Chua and Lin, 1975), and it further extends the compartmental models to more complicated situations involving coupled flows and non-linearities such as concentration dependencies, chemical reaction kinetics, etc.

Full text

PDF
87

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cobelli C., Polo A., Romanin-Jacur G. A computer program for the analysis of controllability, observability and structural identifiability of biological compartmental systems. Comput Programs Biomed. 1977 Mar;7(1):21–36. doi: 10.1016/0010-468x(77)90033-2. [DOI] [PubMed] [Google Scholar]
  2. Farquhar M. G., Palade G. E. Cell junctions in amphibian skin. J Cell Biol. 1965 Jul;26(1):263–291. doi: 10.1083/jcb.26.1.263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Finkelstein A., Mauro A. Equivalent Circuits as Related to Ionic Systems. Biophys J. 1963 May;3(3):215–237. doi: 10.1016/s0006-3495(63)86817-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Heinrich R., Rapoport S. M., Rapoport T. A. Metabolic regulation and mathematical models. Prog Biophys Mol Biol. 1977;32(1):1–82. [PubMed] [Google Scholar]
  5. Helman S. I., Fisher R. S. Microelectrode studies of the active Na transport pathway of frog skin. J Gen Physiol. 1977 May;69(5):571–604. doi: 10.1085/jgp.69.5.571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Howell J. R., Huf E. G. Mathematics of non-steady state uptake and release of Na in a frog skin epidermis model. Comput Biol Med. 1976 Apr;6(2):121–131. doi: 10.1016/0010-4825(76)90043-3. [DOI] [PubMed] [Google Scholar]
  7. Howell J. R., Huf E. G. Metabolic compartmentation in amphibian skin epidermis: a computer simulation study. Comput Biomed Res. 1975 Feb;8(1):72–87. doi: 10.1016/0010-4809(75)90006-3. [DOI] [PubMed] [Google Scholar]
  8. Howell J. R., Huf E. G. Model studies on Na wash-out kinetics in frog skin epidermis. Comput Biomed Res. 1974 Dec;7(6):590–599. doi: 10.1016/0010-4809(74)90035-4. [DOI] [PubMed] [Google Scholar]
  9. Howell J. R., Huf E. G. Numerical simulation of Na washout rates in whole frog skin. Ann Biomed Eng. 1977 Jun;5(2):194–207. doi: 10.1007/BF02364019. [DOI] [PubMed] [Google Scholar]
  10. Huf E. G., Howell J. R. Computer analysis of the Na+ shunt pathways in frog skin epidermis. Comput Biomed Res. 1976 Feb;9(1):11–20. doi: 10.1016/0010-4809(76)90047-1. [DOI] [PubMed] [Google Scholar]
  11. Huf E. G., Howell J. R. Computer modelling. Application to studies on the initial rate of Na+ uptake by frog skin epidermis. J Theor Biol. 1977 Apr 21;65(4):653–669. doi: 10.1016/0022-5193(77)90014-5. [DOI] [PubMed] [Google Scholar]
  12. Huf E. G., Howell J. R. Computer simulation of Na wash-out kinetics in frog skin epidermis. J Membr Biol. 1974;15(1):87–106. doi: 10.1007/BF01870083. [DOI] [PubMed] [Google Scholar]
  13. Huf E. G., Howell J. R. Computer simulation of the response of frog skin epidermis to changes in (Na plus)0. J Membr Biol. 1974;15(1):67–86. doi: 10.1007/BF01870082. [DOI] [PubMed] [Google Scholar]
  14. Mikulecky D. C., Thomas S. R. A simple network thermodynamic method for series-parallel coupled flows. III. Application to coupled solute and volume flows through epithelial membranes. J Theor Biol. 1978 Aug 21;73(4):697–710. doi: 10.1016/0022-5193(78)90131-5. [DOI] [PubMed] [Google Scholar]
  15. Mikulecky D. C., Wiegand W. A., Shiner J. S. A simple network thermodynamic method for modeling series-parallel coupled flows. I. The linear case. J Theor Biol. 1977 Dec 7;69(3):471–510. doi: 10.1016/0022-5193(77)90153-9. [DOI] [PubMed] [Google Scholar]
  16. Morel F., Leblanc G. Transient current changes and Na compartimentalization in frog skin epithelium. Pflugers Arch. 1975 Jul 21;358(2):135–157. doi: 10.1007/BF00583924. [DOI] [PubMed] [Google Scholar]
  17. Rick R., Dörge A., von Arnim E., Thurau K. Electron microprobe analysis of frog skin epithelium: evidence for a syncytial sodium transport compartment. J Membr Biol. 1978 Mar 20;39(4):313–331. doi: 10.1007/BF01869897. [DOI] [PubMed] [Google Scholar]
  18. Thomas S. R., Mikulecky D. C. Transcapillary solute exchange. A comparison of the Kedem-Katchalsky convection-diffusion equations with the rigorous nonlinear equations for this special case. Microvasc Res. 1978 Mar;15(2):207–220. doi: 10.1016/0026-2862(78)90019-5. [DOI] [PubMed] [Google Scholar]
  19. Welch G. R. On the role of organized multienzyme systems in cellular metabolism: a general synthesis. Prog Biophys Mol Biol. 1977;32(2):103–191. [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES