Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1979 Feb;25(2 Pt 1):235–252. doi: 10.1016/s0006-3495(79)85288-1

On the ionic displacement current in lipid bilayer membranes.

S K Rangarajan, R de Levie
PMCID: PMC1328461  PMID: 262389

Abstract

It is shown that the constant field approximation must be amended to make it apply to time-dependent signals. The necessary additional term corresponds to the ionic displacement current. In the absence of adsorption, this ionic displacement current is found to have a characteristic time of the order of a fraction of a microsecond. We confirm its mathematical form as given by Cole (1965). When the membrane-soluble ions are strongly adsorbed, an additional, purely exponential transient of much larger time constant is calculated, with a time dependence identical to that of the translocation of adsorbed ions. Our results support the pseudostationary approximation used by Andersen and Fuchs (1975) in the description of such exponential transients. Explicit expressions are given for the current after a voltage step as for the admittance, both in the absence and presence of adsorption, for a membrane with a rectangular potential energy profile.

Full text

PDF
235

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersen O. S., Finkelstein A., Katz I., Cass A. Effect of phloretin on the permeability of thin lipid membranes. J Gen Physiol. 1976 Jun;67(6):749–771. doi: 10.1085/jgp.67.6.749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Andersen O. S., Fuchs M. Potential energy barriers to ion transport within lipid bilayers. Studies with tetraphenylborate. Biophys J. 1975 Aug;15(8):795–830. doi: 10.1016/S0006-3495(75)85856-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Armstrong C. M., Bezanilla F. Charge movement associated with the opening and closing of the activation gates of the Na channels. J Gen Physiol. 1974 May;63(5):533–552. doi: 10.1085/jgp.63.5.533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Armstrong C. M., Bezanilla F. Currents related to movement of the gating particles of the sodium channels. Nature. 1973 Apr 13;242(5398):459–461. doi: 10.1038/242459a0. [DOI] [PubMed] [Google Scholar]
  5. Benz R., Fröhlich O., Läuger P. Influence of membrane structure on the kinetics of carrier-mediated ion transport through lipid bilayers. Biochim Biophys Acta. 1977 Feb 4;464(3):465–481. doi: 10.1016/0005-2736(77)90023-2. [DOI] [PubMed] [Google Scholar]
  6. Benz R., Läuger P. Kinetic analysis of carrier-mediated ion transport by the charge-pulse technique. J Membr Biol. 1976 Jun 9;27(1-2):171–191. doi: 10.1007/BF01869135. [DOI] [PubMed] [Google Scholar]
  7. Bradshaw R. W., Robertson C. R. Effect of ionic polarizability on electrodiffusion in lipid bilayer membranes. J Membr Biol. 1975 Dec 4;25(1-2):93–114. doi: 10.1007/BF01868570. [DOI] [PubMed] [Google Scholar]
  8. Bruner L. J. The interaction of hydrophobic ions with lipid bilayer membranes. J Membr Biol. 1975;22(2):125–141. doi: 10.1007/BF01868167. [DOI] [PubMed] [Google Scholar]
  9. COLE K. S. ELECTRODIFFUSION MODELS FOR THE MEMBRANE OF SQUID GIANT AXON. Physiol Rev. 1965 Apr;45:340–379. doi: 10.1152/physrev.1965.45.2.340. [DOI] [PubMed] [Google Scholar]
  10. De Levie R., Seidah N. G., Moreira H. Transport of ions of one kind through thin membranes. II. Nonequilibrium steady-state behavior. J Membr Biol. 1972;10(2):171–192. doi: 10.1007/BF01867852. [DOI] [PubMed] [Google Scholar]
  11. Haydon D. A., Myers V. B. Surface charge, surface dipoles and membrane conductance. Biochim Biophys Acta. 1973 May 25;307(3):429–443. doi: 10.1016/0005-2736(73)90289-7. [DOI] [PubMed] [Google Scholar]
  12. Hays T. R., Buckwalter C. Q., Jr, Lin S. H., Eyring H. Ion flow through a membrane: concentration and current responses to a step potential change. Proc Natl Acad Sci U S A. 1978 Apr;75(4):1612–1615. doi: 10.1073/pnas.75.4.1612. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. MacGillivray A. D., Hare D. Applicability of Goldman's constant field assumption to biological systems. J Theor Biol. 1969 Oct;25(1):113–126. doi: 10.1016/s0022-5193(69)80019-6. [DOI] [PubMed] [Google Scholar]
  14. McLaughlin S. Salicylates and phospholipid bilayer membranes. Nature. 1973 May 25;243(5404):234–236. doi: 10.1038/243234a0. [DOI] [PubMed] [Google Scholar]
  15. Neumcke B., Läuger P. Nonlinear electrical effects in lipid bilayer membranes. II. Integration of the generalized Nernst-Planck equations. Biophys J. 1969 Sep;9(9):1160–1170. doi: 10.1016/S0006-3495(69)86443-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Parsegian A. Energy of an ion crossing a low dielectric membrane: solutions to four relevant electrostatic problems. Nature. 1969 Mar 1;221(5183):844–846. doi: 10.1038/221844a0. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES