Abstract
The inward sodium current in cardiac muscle is difficult to study by voltage clamp methods, so various indirect experimental measures have been used to obtain insight into its characteristics. These methods depend on the relationship between maximal upstroke velocity of the action potential (Vmax) and the sodium current (INa), usually defined in terms of the Hodgkin-Huxley model. These relationships were explored using an adaptation of this model to cardiac Purkinje fibers. In general Vmax corresponded to INa, and it could be used to determine the relationship of membrane potential to GNa, and h infinity. The results, however, depended on the method of stimulation of the action potential, and an optimal stimulation method was determined. A commonly used experimental technique called "membrane responsiveness" was shown to distort seriously the properties of steady-state gating inactivation that is supposed to measure. Estimation of the changes in maximal sodium conductance, such as those produced by tetrodotoxin (TTX), would be accurately measured. Some experimental results have indicated a voltage-dependent effect of TTX. Characteristics of the measures of TTX effect under those conditions were illustrated. In summary, calculations with a model of the cardiac Purkinje fiber action potential provide insight into the accuracy of certain experimental methods using maximal upstroke velocity as a measure of INa, and cast doubt on other experimental methods, such as membrane responsiveness.
Full text
PDF













Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baer M., Best P. M., Reuter H. Voltage-dependent action of tetrodotoxin in mammalian cardiac muscle. Nature. 1976 Sep 23;263(5575):344–345. doi: 10.1038/263344a0. [DOI] [PubMed] [Google Scholar]
- Beeler G. W., Reuter H. Reconstruction of the action potential of ventricular myocardial fibres. J Physiol. 1977 Jun;268(1):177–210. doi: 10.1113/jphysiol.1977.sp011853. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen C. M., Gettes L. S., Katzung B. G. Effect of lidocaine and quinidine on steady-state characteristics and recovery kinetics of (dV/dt)max in guinea pig ventricular myocardium. Circ Res. 1975 Jul;37(1):20–29. doi: 10.1161/01.res.37.1.20. [DOI] [PubMed] [Google Scholar]
- Cohen I. S., Strichartz G. R. On the voltage-dependent action of tetrodotoxin. Biophys J. 1977 Mar;17(3):275–279. doi: 10.1016/S0006-3495(77)85656-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dudel J., Peper K., Rüdel R., Trautwein W. Excitatory membrane current in heart muscle (Purkinje fibers). Pflugers Arch Gesamte Physiol Menschen Tiere. 1966;292(3):255–273. doi: 10.1007/BF00362740. [DOI] [PubMed] [Google Scholar]
- Dudel J., Rüdel R. Voltage and time dependence of excitatory sodium current in cooled sheep Purkinje fibres. Pflugers Arch. 1970;315(2):136–158. doi: 10.1007/BF00586657. [DOI] [PubMed] [Google Scholar]
- Gettes L. S., Reuter H. Slow recovery from inactivation of inward currents in mammalian myocardial fibres. J Physiol. 1974 Aug;240(3):703–724. doi: 10.1113/jphysiol.1974.sp010630. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HODGKIN A. L., HUXLEY A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952 Aug;117(4):500–544. doi: 10.1113/jphysiol.1952.sp004764. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hondeghem L. M. Validity of Vmax as a measure of the sodium current in cardiac and nervous tissues. Biophys J. 1978 Jul;23(1):147–152. doi: 10.1016/S0006-3495(78)85439-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McAllister R. E., Noble D., Tsien R. W. Reconstruction of the electrical activity of cardiac Purkinje fibres. J Physiol. 1975 Sep;251(1):1–59. doi: 10.1113/jphysiol.1975.sp011080. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schoenberg M., Fozzard H. A. The influence of intercellular clefts on the electrical properties of sheep cardiac Purkinje fibers. Biophys J. 1979 Feb;25(2 Pt 1):217–234. doi: 10.1016/s0006-3495(79)85287-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Strichartz G., Cohen I. Vmax as a measure of GNa in nerve and cardiac membranes. Biophys J. 1978 Jul;23(1):153–156. doi: 10.1016/S0006-3495(78)85440-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WEIDMANN S. The effect of the cardiac membrane potential on the rapid availability of the sodium-carrying system. J Physiol. 1955 Jan 28;127(1):213–224. doi: 10.1113/jphysiol.1955.sp005250. [DOI] [PMC free article] [PubMed] [Google Scholar]