Abstract
A quasi-short-circuit (tunable voltage clamp) measurement method with microsecond time resolution was applied to a bacteriorhodopsin model membrane formed by a novel interfacial technique. A new component (B1) of the displacement photocurrent was recorded: it has no detectable latency at an instrumental time constant of 1.5 museconds, and persists at 5 degrees C. In addition, a slower component (B2) of opposite polarity inhibited by low temperature (5 degrees C) and low pH (pH = 3.0) was recorded. The technique is very sensitive for the study of fast capacitative photoresponses in model membranes, and allows the detection of charge displacements in bacteriorhodopsin associated with distinct stages of the photochemical transformation.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Cone R. A. Early receptor potential: photoreversible charge displacement in rhodopsin. Science. 1967 Mar 3;155(3766):1128–1131. doi: 10.1126/science.155.3766.1128. [DOI] [PubMed] [Google Scholar]
- Drachev L. A., Frolov V. N., Kaulen A. D., Liberman E. A., Ostroumov S. A., Plakunova V. G., Semenov A. Y., Skulachev V. P. Reconstitution of Biological Molecular generators of electric current. Bacteriorhodopsin. J Biol Chem. 1976 Nov 25;251(22):7059–7065. [PubMed] [Google Scholar]
- Drachev L. A., Kaulen A. D., Ostroumov S. A., Skulachev V. P. Electrogenesis by bacteriorhodopsin incorporated in a planar phospholipid membrane. FEBS Lett. 1974 Feb 1;39(1):43–45. doi: 10.1016/0014-5793(74)80012-8. [DOI] [PubMed] [Google Scholar]
- Drachev L. A., Kaulen A. D., Skulachev V. P. Time resolution of the intermediate steps in the bacteriorhodopsin-linked electrogenesis. FEBS Lett. 1978 Mar 1;87(1):161–167. doi: 10.1016/0014-5793(78)80157-4. [DOI] [PubMed] [Google Scholar]
- Hagins W. A., Rüppel H. Fast photoelectric effects and the properties of vertebrate photoreceptors as electric cables. Fed Proc. 1971 Jan-Feb;30(1):64–68. [PubMed] [Google Scholar]
- Henderson R. The purple membrane from Halobacterium halobium. Annu Rev Biophys Bioeng. 1977;6:87–109. doi: 10.1146/annurev.bb.06.060177.000511. [DOI] [PubMed] [Google Scholar]
- Herrmann T. R., Rayfield G. W. The electrical response to light of bacteriorhodopsin in planar membranes. Biophys J. 1978 Feb;21(2):111–125. doi: 10.1016/S0006-3495(78)85512-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hong F. T. Charge transfer across pigmented bilayer lipid membrane and its interfaces. Photochem Photobiol. 1976 Aug;24(2):155–189. doi: 10.1111/j.1751-1097.1976.tb06809.x. [DOI] [PubMed] [Google Scholar]
- Hong F. T., Mauzerall D. Interfacial photoreactions and chemical capacitance in lipid bilayers. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1564–1568. doi: 10.1073/pnas.71.4.1564. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hwang S. B., Korenbrot J. I., Stoeckenius W. Transient photovoltages in purple membrane multilayers. Charge displacement in bacteriorhodopsin and its photointermediates. Biochim Biophys Acta. 1978 May 18;509(2):300–317. doi: 10.1016/0005-2736(78)90049-4. [DOI] [PubMed] [Google Scholar]
- Lozier R. H., Bogomolni R. A., Stoeckenius W. Bacteriorhodopsin: a light-driven proton pump in Halobacterium Halobium. Biophys J. 1975 Sep;15(9):955–962. doi: 10.1016/S0006-3495(75)85875-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Montal M., Mueller P. Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. Proc Natl Acad Sci U S A. 1972 Dec;69(12):3561–3566. doi: 10.1073/pnas.69.12.3561. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oesterhelt D., Stoeckenius W. Functions of a new photoreceptor membrane. Proc Natl Acad Sci U S A. 1973 Oct;70(10):2853–2857. doi: 10.1073/pnas.70.10.2853. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Racker E., Stoeckenius W. Reconstitution of purple membrane vesicles catalyzing light-driven proton uptake and adenosine triphosphate formation. J Biol Chem. 1974 Jan 25;249(2):662–663. [PubMed] [Google Scholar]
- Trissl H. W., Darszon A., Montal M. Rhodopsin in model membranes: charge displacements in interfacial layers. Proc Natl Acad Sci U S A. 1977 Jan;74(1):207–210. doi: 10.1073/pnas.74.1.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Trissl H. W., Montal M. Electrical demonstration of rapid light-induced conformational changes in bacteriorhodopsin. Nature. 1977 Apr 14;266(5603):655–657. doi: 10.1038/266655a0. [DOI] [PubMed] [Google Scholar]