Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1979 Apr;26(1):101–114. doi: 10.1016/S0006-3495(79)85238-8

Red cell extensional recovery and the determination of membrane viscosity.

R M Hochmuth, P R Worthy, E A Evans
PMCID: PMC1328506  PMID: 262407

Abstract

A theory of membrane viscoelasticity developed by Evans and Hochmuth in 1976 is used to analyze the time-dependent recovery of an elongated cell. Before release, the elongated cell is the static equilibrium where external forces are balanced by membrane elastic force resultants. Upon release, the cell recovers its initial shape with a time-dependent exponential behavior characteristic of the viscoelastic solid model. It is shown that the model describes the time-dependent recovery process very well for a time constant in the range of 0.1-0.13 s. The time constant is the ratio membrane surface viscosity eta:membrane surface elasticity mu. Measurements for the shear modulus mu of 0.006 dyne/cm give a value for the surface viscosity of red cell membrane as a viscoelastic solid material of eta = mu tc = (6-8) X 10(-4) poise . cm.

Full text

PDF
101

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brain M. C., Kohn I., McComas A. J., Missirlis Y. F., Rathbone M. P., Vickers J. Red-cell stability in Duchenne's syndrome. N Engl J Med. 1978 Feb 16;298(7):403–403. doi: 10.1056/NEJM197802162980716. [DOI] [PubMed] [Google Scholar]
  2. Chien S., Sung K. L., Skalak R., Usami S., Tözeren A. Theoretical and experimental studies on viscoelastic properties of erythrocyte membrane. Biophys J. 1978 Nov;24(2):463–487. doi: 10.1016/S0006-3495(78)85395-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Evans E. A., Hochmuth R. M. Membrane viscoelasticity. Biophys J. 1976 Jan;16(1):1–11. doi: 10.1016/S0006-3495(76)85658-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Evans E. A., Hochmuth R. M. Membrane viscoplastic flow. Biophys J. 1976 Jan;16(1):13–26. doi: 10.1016/S0006-3495(76)85659-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Evans E. A., La Celle P. L. Intrinsic material properties of the erythrocyte membrane indicated by mechanical analysis of deformation. Blood. 1975 Jan;45(1):29–43. [PubMed] [Google Scholar]
  6. Evans E. A. New membrane concept applied to the analysis of fluid shear- and micropipette-deformed red blood cells. Biophys J. 1973 Sep;13(9):941–954. doi: 10.1016/S0006-3495(73)86036-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Evans E. A., Waugh R. Osmotic correction to elastic area compressibility measurements on red cell membrane. Biophys J. 1977 Dec;20(3):307–313. doi: 10.1016/S0006-3495(77)85551-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hochmuth R. M., Mohandas N., Blackshear P. L., Jr Measurement of the elastic modulus for red cell membrane using a fluid mechanical technique. Biophys J. 1973 Aug;13(8):747–762. doi: 10.1016/S0006-3495(73)86021-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Waugh R., Evans E. A. Thermoelasticity of red blood cell membrane. Biophys J. 1979 Apr;26(1):115–131. doi: 10.1016/S0006-3495(79)85239-X. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES