Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1979 Jun;26(3):345–366. doi: 10.1016/S0006-3495(79)85258-3

Amide hydrogen exchange rates of peptides in H2O solution by 1H nuclear magnetic resonance transfer of solvent saturation method. Conformations of oxytocin and lysine vasopressin in aqueous solution.

N R Krishna, D H Huang, J D Glickson, R Rowan 3rd, R Walter
PMCID: PMC1328557  PMID: 262422

Abstract

The NH exchange rates in aqueous media of oxytocin and 8-lysine vasopressin (LVP) have been measured by using transfer of solvent saturation method. The data are consistent with a "highly motile" dynamic equilibrium between folded and highly solvated conformations. The highly-motility limit applies to the exchange of NH hydrogens of oxytocin and LVP. Folded structures are more prevalent in oxytocin than in LVP. Partial shielding is indicated for peptide hydrogens of Asn5 and perhaps also Cys6 of oxytocin and for Cys6 of LVP. It is tentatively proposed that the folded conformation of oxytocin in aqueous media may contain a parallel beta-structure in the tocinamide ring consisting of two hydrogen bonds: one between the Tyr2 C = O and Asn5 peptide NH as originally proposed for the preferred conformation of oxytocin in dimethyl sulfoxide (D. W. Urry and R. Walter), and the second between he Cys1 C = O and the Cys6 NH. In LVP the hydrogen bond between the Tyr2 C = O and Asn5 peptide NH appears to be absent. The acylic tripeptide sequences (-Pro-X-Gly-NH2) of both hormones appear to be predominantly solvated. The second-order rate constants for acid catalyzed exchange of the primary amide hydrogens of Gln4, Asn5, and Gly9 of oxytocin are consistently greater for the trans NH than for the corresponding cis NH. This observation can be rationalized in terms of mechanisms involving protonation of either the amide oxygen, or the amide nitrogen, but with limited rotation about the C - N bond.

Full text

PDF
345

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BERGER A., LINDERSTROM-LANG K. Deuterium exchange of poly-DL-alanine in aqueous solution. Arch Biochem Biophys. 1957 Jul;69:106–118. doi: 10.1016/0003-9861(57)90478-2. [DOI] [PubMed] [Google Scholar]
  2. Bleich H. E., Glasel J. A. Letter: Catalysis of amide proton exchange by lanthanum ions. J Am Chem Soc. 1975 Oct 29;97(22):6585–6586. doi: 10.1021/ja00855a054. [DOI] [PubMed] [Google Scholar]
  3. Brewster A. I., Hruby V. J. 300-MHz nuclear magnetic resonance study of oxytocin aqueous solution: conformational implications. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3806–3809. doi: 10.1073/pnas.70.12.3806. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Deslauriers R., Smith C. P., Walter R. Conformational flexibility of the neurohypophyseal hormones oxytocin and lysine-vasopressin. A carbon-13 spin-lattice relaxation study of backbone and side chains. J Am Chem Soc. 1974 Apr 3;96(7):2289–2291. doi: 10.1021/ja00814a071. [DOI] [PubMed] [Google Scholar]
  5. Englander S. W., Downer N. W., Teitelbaum H. Hydrogen exchange. Annu Rev Biochem. 1972;41:903–924. doi: 10.1146/annurev.bi.41.070172.004351. [DOI] [PubMed] [Google Scholar]
  6. Englander S. W., Englander J. J. Hydrogen-tritium exchange. Methods Enzymol. 1972;26:406–413. doi: 10.1016/s0076-6879(72)26021-9. [DOI] [PubMed] [Google Scholar]
  7. Feeney J., Roberts G. C., Rockey J. H., Burgen A. S. Conformational studies of oxytocin and lysine vasopressin in aqueous solution using high resolution NMR spectroscopy. Nat New Biol. 1971 Jul 28;232(30):108–110. doi: 10.1038/newbio232108a0. [DOI] [PubMed] [Google Scholar]
  8. Gibbons W. A., Alms H., Bockman R. S., Wyssbrod H. R. Homonuclear indor spectroscopy as a means of simplifying and analyzing proton magnetic resonance spectra of peptides and as a basis for determining secondary and tertiary conformations of complex peptides. Biochemistry. 1972 Apr 25;11(9):1721–1725. doi: 10.1021/bi00759a030. [DOI] [PubMed] [Google Scholar]
  9. Gibbons W. A., Alms H., Sogn J., Wyssbrod H. R. Homonuclear internuclear double resonance spectroscopy as a basis for determination of amino acid conformation. Proc Natl Acad Sci U S A. 1972 May;69(5):1261–1265. doi: 10.1073/pnas.69.5.1261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Glickson J. D., Dadok J., Marshall G. R. Proton magnetic double-resonance study of angiotensin II (Asn1Val5) in aqueous solution employing correlation spectroscopy. Assignment of peptide NH resonances and transfer of saturation from water. Biochemistry. 1974 Jan 1;13(1):11–14. doi: 10.1021/bi00698a002. [DOI] [PubMed] [Google Scholar]
  11. Glickson J. D., Phillips W. D., Rupley J. A. Proton magnetic resonance study of the indole NH resonances of lysozyme. Assignment, deuterium exchange kinetics, and inhibitor binding. J Am Chem Soc. 1971 Aug 11;93(16):4031–4038. doi: 10.1021/ja00745a035. [DOI] [PubMed] [Google Scholar]
  12. Glickson J. D., Urry D. W., Havran R. T., Walter R. Proton magnetic resonance comparison of neurohypophyseal hormones and analogs: deletion of amino groups and the conformation of lysine vasopressin. Proc Natl Acad Sci U S A. 1972 Aug;69(8):2136–2140. doi: 10.1073/pnas.69.8.2136. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Glickson J. D., Urry D. W., Walter R. Method for correlation of proton magnetic resonance assignments in different solvents: conformational transition of oxytocin and lysine vasopressin from dimethylsulfoxide to water. Proc Natl Acad Sci U S A. 1972 Sep;69(9):2566–2569. doi: 10.1073/pnas.69.9.2566. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. HVIDT A. A DISCUSSION OF THE PH DEPENDENCE OF THE HYDROGEN-DEUTERIUM EXCHANGE OF PROTEINS. C R Trav Lab Carlsberg. 1964;34:299–317. [PubMed] [Google Scholar]
  15. HVIDT A., LINDERSTROM-LANG K. Exchange of deuterium and 18O between water and other substances. III. Deuterium exchange of short peptides, Sanger's A-chain and insulin. C R Trav Lab Carlsberg Chim. 1955;29(22-23):385–402. [PubMed] [Google Scholar]
  16. Harrington W. F., Josephs R., Segal D. M. Physical chemical studies on proteins and polypeptides. Annu Rev Biochem. 1966;35:599–650. doi: 10.1146/annurev.bi.35.070166.003123. [DOI] [PubMed] [Google Scholar]
  17. Hase S., Walter R. Symmetrical disulfide bonds as S-protecting groups and their cleavage by dithiothreitol: synthesis of oxytocin with high biological activity. Int J Pept Protein Res. 1973;5(4):283–288. doi: 10.1111/j.1399-3011.1973.tb03463.x. [DOI] [PubMed] [Google Scholar]
  18. Johnston P. D., Redfield A. G. An NMR study of the exchange rates for protons involved in the secondary and tertiary structure of yeast tRNA Phe. Nucleic Acids Res. 1977 Oct;4(10):3599–3615. doi: 10.1093/nar/4.10.3599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. KLOTZ I. M., FRANK B. H. DEUTERIUM--HYDROGEN EXCHANGE IN AMIDE N--H GROUPS. J Am Chem Soc. 1965 Jun 20;87:2721–2728. doi: 10.1021/ja01090a033. [DOI] [PubMed] [Google Scholar]
  20. Klotz I. M. Molecular aspects of hydrogen-deuterium exchange in macromolecules. J Colloid Interface Sci. 1968 Aug;27(4):804–817. doi: 10.1016/0021-9797(68)90114-8. [DOI] [PubMed] [Google Scholar]
  21. Klotz I. M., Mueller D. D. Local environment effects on hydrogen--deuterium exchange. Biochemistry. 1969 Jan;8(1):12–16. doi: 10.1021/bi00829a003. [DOI] [PubMed] [Google Scholar]
  22. LENORMANT H., BLOUT E. R. Origin of the absorption band at 1,550 cm.-1 in proteins. Nature. 1953 Oct 24;172(4382):770–771. doi: 10.1038/172770a0. [DOI] [PubMed] [Google Scholar]
  23. Meienhofer J., Sano Y. A solid-phase synthesis of [lysine]-vasopressin through a crystalline protected nonapeptide intermediate. J Am Chem Soc. 1968 May 22;90(11):2996–2997. doi: 10.1021/ja01013a067. [DOI] [PubMed] [Google Scholar]
  24. Molday R. S., Englander S. W., Kallen R. G. Primary structure effects on peptide group hydrogen exchange. Biochemistry. 1972 Jan 18;11(2):150–158. doi: 10.1021/bi00752a003. [DOI] [PubMed] [Google Scholar]
  25. Ottesen M. Methods for measurement of hydrogen isotope exchange in globular proteins. Methods Biochem Anal. 1971;20:135–168. doi: 10.1002/9780470110393.ch5. [DOI] [PubMed] [Google Scholar]
  26. Pitner T. P., Glickson J. D., Dadok J., Marshall G. R. Solvent exposure of specific nuclei of angiotensin II determined by NMR solvent saturation method. Nature. 1974 Aug 16;250(467):582–584. doi: 10.1038/250582a0. [DOI] [PubMed] [Google Scholar]
  27. Redfield A. G. Proton nuclear magnetic resonance in aqueous solutions. Methods Enzymol. 1978;49:253–270. doi: 10.1016/s0076-6879(78)49014-7. [DOI] [PubMed] [Google Scholar]
  28. Sheinblatt M. Nuclear magnetic resonance study of the protolysis kinetics of the peptide hydrogens of triglycine. J Am Chem Soc. 1966 May 20;88(10):2123–2126. doi: 10.1021/ja00962a007. [DOI] [PubMed] [Google Scholar]
  29. Stern A., Gibbons W. A., Craig L. C. A conformational analysis of gramicidin S-A by nuclear magnetic resonance. Proc Natl Acad Sci U S A. 1968 Oct;61(2):734–741. doi: 10.1073/pnas.61.2.734. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Urry D. W., Ohnishi M., Walter R. Secondary structure of the cyclic moiety of the peptide hormone oxytocin and its deamino analog. Proc Natl Acad Sci U S A. 1970 May;66(1):111–116. doi: 10.1073/pnas.66.1.111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Urry D. W., Walter R. Proposed conformation of oxytocin in solution. Proc Natl Acad Sci U S A. 1971 May;68(5):956–958. doi: 10.1073/pnas.68.5.956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Von Dreele P. H., Brewster A. I., Dadok J., Scheraga H. A., Bovey F. A., Ferger M. F., Du Vigneaud V. Nuclear magnetic resonance spectrum of lysine-vasopressin in aqueous solution and its structural implictions. Proc Natl Acad Sci U S A. 1972 Aug;69(8):2169–2173. doi: 10.1073/pnas.69.8.2169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Waelder S. F., Redfield A. G. Nuclear magnetic resonance studies of exchangeable protons. II. The solvent exchange rate of the indole nitrogen proton of tryptophan derivatives. Biopolymers. 1977 Mar;16(3):623–629. doi: 10.1002/bip.1977.360160311. [DOI] [PubMed] [Google Scholar]
  34. Waelder S., Lee L., Redfield A. G. Letter: Nuclear magnetic resonance studies of exchangeable protons. I. Fourier transform saturation-recovery and transfer of saturation of the tryptophan indole nitrogen proton. J Am Chem Soc. 1975 May 14;97(10):2927–2928. doi: 10.1021/ja00843a066. [DOI] [PubMed] [Google Scholar]
  35. Walter R., Glickson J. D., Schwartz I. L., Havran R. T., Meienhofer J., Urry D. W. Conformation of lysine vasopressin: a comparison with oxytocin. Proc Natl Acad Sci U S A. 1972 Jul;69(7):1920–1924. doi: 10.1073/pnas.69.7.1920. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Walter R., Smith I. C., Deslauriers R. The conformation of oxytocin in dimethylsulfoxide as revealed by carbon-13 spin-lattice relaxation times. Biochem Biophys Res Commun. 1974 May 7;58(1):216–221. doi: 10.1016/0006-291x(74)90914-0. [DOI] [PubMed] [Google Scholar]
  37. Walter R., Wyssbrod H. R., Glickson J. D. Conformational studies on [3-D-alanine]-oxytocin and [4-D-alanine]-oxytocin in dimethyl sulfoxide by 1H nuclear magnetic resonance spectroscopy. Interpretation in terms of a beta turn in the cyclic moiety. J Am Chem Soc. 1977 Oct 26;99(22):7326–7332. doi: 10.1021/ja00464a037. [DOI] [PubMed] [Google Scholar]
  38. Willumsen L. Hydrogen isotope exchange in the study of protein conformation. A quantitative test of an exchange mechanism. C R Trav Lab Carlsberg. 1971;38(14):223–295. [PubMed] [Google Scholar]
  39. Wyssbrod H. R., Ballardin A., Schwartz I. L., Walter R., Van Binst G., Gibbons W. A., Agosta W. C., Field F. H., Cowburn D. Side chain torsional angles and rotational isomerism of oxytocin in aqueous solution. J Am Chem Soc. 1977 Aug 3;99(16):5273–5276. doi: 10.1021/ja00458a008. [DOI] [PubMed] [Google Scholar]
  40. Wyssbrod H. R., Ballardin A., Schwartz I. L., Walter R., Van Binst G., Gibbons W. A., Agosta W. C., Field F. H., Cowburn D. Side chain torsional angles and rotational isomerism of oxytocin in aqueous solution. J Am Chem Soc. 1977 Aug 3;99(16):5273–5276. doi: 10.1021/ja00458a008. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES