Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1979 Jun;26(3):441–466. doi: 10.1016/S0006-3495(79)85264-9

Modification of ion transport in lipid bilayer membranes in the presence of 2,4-dichlorophenoxyacetic acid. I. Enhancement of cationic conductance and changes of the kinetics of nonactin-mediated transport of potassium.

P Smejtek, M Paulis-Illangasekare
PMCID: PMC1328563  PMID: 263687

Abstract

We have found that herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) has the ability to increase the rate of transport of positive ions of several kinds, and to inhibit transport of negatively charged tetraphenylborate ions in lipid bilayer membranes. It has been found that only the neutral form of 2,4-D is transport active, whereas the ionized from of 2,4-D does not modify transport of ions, and does not by itself permeate through lipid membranes. The results suggest that the enhancement of transport of positively charged ions such as tetraphenylarsonium + and nonactin-K+ is dominated by the increase of the ion translocation rate constant. It has been shown that the enhancement of nonactin-mediated transport of K+ by 2,4-D can be accounted for by a simple carrier model. We have observed that a 2,4-D concentration above 3 X 10(-4) M the potassium ion transport in phosphatidylcholine-cholesterol as well as in cholesterol-free glycerolmonooleate membranes is enhanced to such a degree that, depending upon the concentration of potassium ions, it becomes limited by the rate of recombination of K+ with nonactin, and/or by backdiffusion of unloaded nonactin molecules. Furthermore, the effect of 2,4-D is enhanced by ionic strength of aqueous solution. From the changes of kinetic parameters of nonactin-K+ transport, as well as from the changes of membranes conductance due to tetraphenylarsonium + ions, we have estimated the changes of the electrical potential of the membrane interior. We have found that the potential of the interior of the membrane becomes more negative in the presence of 2,4-D, and that its change is proportional to the aqueous concentration of 2,4-D. The effect of 2,4-D on ion transport has been attributed to a layer of 2,4-D molecules absorbed within the interfacial region, and having a dipole moment directed toward the aqueous medium. The results of kinetic studied of nonactin-K+ transport suggest that this layer is located on the hydrocarbon side of the interface.

Full text

PDF
441

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersen O. S., Feldberg S., Nakadomari H., Levy S., McLaughlin S. Electrostatic interactions among hydrophobic ions in lipid bilayer membranes. Biophys J. 1978 Jan;21(1):35–70. doi: 10.1016/S0006-3495(78)85507-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Andersen O. S., Finkelstein A., Katz I., Cass A. Effect of phloretin on the permeability of thin lipid membranes. J Gen Physiol. 1976 Jun;67(6):749–771. doi: 10.1085/jgp.67.6.749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Andersen O. S., Fuchs M. Potential energy barriers to ion transport within lipid bilayers. Studies with tetraphenylborate. Biophys J. 1975 Aug;15(8):795–830. doi: 10.1016/S0006-3495(75)85856-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Benz R., Cros D. Influence of sterols on ion transport through lipid bilayer membranes. Biochim Biophys Acta. 1978 Jan 19;506(2):265–280. doi: 10.1016/0005-2736(78)90397-8. [DOI] [PubMed] [Google Scholar]
  5. Benz R., Fröhlich O., Läuger P. Influence of membrane structure on the kinetics of carrier-mediated ion transport through lipid bilayers. Biochim Biophys Acta. 1977 Feb 4;464(3):465–481. doi: 10.1016/0005-2736(77)90023-2. [DOI] [PubMed] [Google Scholar]
  6. Benz R., Läuger P., Janko K. Transport kinetics of hydrophobic ions in lipid bilayer membranes. Charge-pulse relaxation studies. Biochim Biophys Acta. 1976 Dec 14;455(3):701–720. doi: 10.1016/0005-2736(76)90042-0. [DOI] [PubMed] [Google Scholar]
  7. Benz R., Läuger P. Transport kinetics of dipicrylamine through lipid bilayer membranes. Effects of membrane structure. Biochim Biophys Acta. 1977 Jul 14;468(2):245–258. doi: 10.1016/0005-2736(77)90118-3. [DOI] [PubMed] [Google Scholar]
  8. Berwick P. 2,4-dichlorophenoxyacetic acid poisoning in man. Some interesting clinical and laboratory findings. JAMA. 1970 Nov 9;214(6):1114–1117. [PubMed] [Google Scholar]
  9. Borisova M. P., Ermishkin L. N., Liberman E. A., Silberstein A. Y., Trofimov E. M. Mechanism of conductivity of bimolecular lipid membranes in the presence of tetrachlorotrifluoromethylbenzimidazole. J Membr Biol. 1974;18(3-4):243–261. doi: 10.1007/BF01870115. [DOI] [PubMed] [Google Scholar]
  10. Bristol D. W., Ghanuni A. M., Oleson A. E. Metabolism of 2,4-dichlorophenoxyacetic acid by wheat cell suspension cultures. J Agric Food Chem. 1977 Nov-Dec;25(6):1308–1314. doi: 10.1021/jf60214a008. [DOI] [PubMed] [Google Scholar]
  11. Bruner L. J. The interaction of hydrophobic ions with lipid bilayer membranes. J Membr Biol. 1975;22(2):125–141. doi: 10.1007/BF01868167. [DOI] [PubMed] [Google Scholar]
  12. Cohen F. S., Eisenberg M., McLaughlin S. The kinetic mechanism of action of an uncoupler of oxidative phosphorylation. J Membr Biol. 1977 Dec 15;37(3-4):361–396. doi: 10.1007/BF01940940. [DOI] [PubMed] [Google Scholar]
  13. Dux E., Tóth I., Dux L., Joó F., Kiszely G. The possible cellular mechanism of 2,4-dichlorophenoxyacetate-induced myopathy. FEBS Lett. 1977 Oct 15;82(2):219–222. doi: 10.1016/0014-5793(77)80588-7. [DOI] [PubMed] [Google Scholar]
  14. Feldberg S. W., Delgado A. B. Inner voltage clamping. A method for studying interactions among hydrophobic ions in a lipid bilayer. Biophys J. 1978 Jan;21(1):71–86. doi: 10.1016/S0006-3495(78)85508-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Feung C. S., Hamilton R. H., Mumma R. O. Metabolism of 2,4-dichlorophenoxyacetic acid. 11. Herbicidal properties of amino acid conjugates. J Agric Food Chem. 1977 Jul-Aug;25(4):898–900. doi: 10.1021/jf60212a013. [DOI] [PubMed] [Google Scholar]
  16. Feung C. S., Hamilton R. H., Witham F. H., Mumma R. O. The relative amounts and identification of some 2,4-dichlorophenoxyacetic Acid metabolites isolated from soybean cotyledon callus cultures. Plant Physiol. 1972 Jul;50(1):80–86. doi: 10.1104/pp.50.1.80. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Feung C. S., Mumma R. O., Hamilton R. H. Metabolism of 2,4-dichlorophenoxyacetic acid. VI. Biological properties of amino acid conjugates. J Agric Food Chem. 1974 Mar-Apr;22(2):307–309. doi: 10.1021/jf60192a040. [DOI] [PubMed] [Google Scholar]
  18. Feung C., Hamilton R. H., Mumma R. O. Metabolism of 2,4-dichlorophenoxyacetic acid. V. Identification of metabolites in soybean callus tissue cultures. J Agric Food Chem. 1973 Jul-Aug;21(4):637–640. doi: 10.1021/jf60188a058. [DOI] [PubMed] [Google Scholar]
  19. Feung C., Hamilton R. H., Mumma R. O. Metabolism of 2,4-dichlorophenoxyacetic acid. VII. Comparison of metabolities from five species of plant tissue cultures. J Agric Food Chem. 1975 May-Jun;23(3):373–376. doi: 10.1021/jf60199a065. [DOI] [PubMed] [Google Scholar]
  20. Finkelstein A. Weak-acid uncouplers of oxidative phosphorylation. Mechanism of action on thin lipid membranes. Biochim Biophys Acta. 1970 Apr 7;205(1):1–6. doi: 10.1016/0005-2728(70)90055-1. [DOI] [PubMed] [Google Scholar]
  21. Foster M., McLaughlin S. Complexes between uncouplers of oxidative phosphorylation. J Membr Biol. 1974;17(2):155–180. doi: 10.1007/BF01870177. [DOI] [PubMed] [Google Scholar]
  22. Gavach C., Sandeaux R. Non-mediated zero voltage conductance of hydrophobic ions through bilayer lipid membranes. Biochim Biophys Acta. 1975 Nov 17;413(1):33–44. doi: 10.1016/0005-2736(75)90056-5. [DOI] [PubMed] [Google Scholar]
  23. Hanai T., Haydon D. A., Taylor J. The variation of capacitance and conductance of bimolecular lipid membranes with area. J Theor Biol. 1965 Nov;9(3):433–443. doi: 10.1016/0022-5193(65)90042-1. [DOI] [PubMed] [Google Scholar]
  24. Haydon D. A. Functions of the lipid in bilayer ion permeability. Ann N Y Acad Sci. 1975 Dec 30;264:2–16. doi: 10.1111/j.1749-6632.1975.tb31472.x. [DOI] [PubMed] [Google Scholar]
  25. Haydon D. A., Myers V. B. Surface charge, surface dipoles and membrane conductance. Biochim Biophys Acta. 1973 May 25;307(3):429–443. doi: 10.1016/0005-2736(73)90289-7. [DOI] [PubMed] [Google Scholar]
  26. Hladky S. B. Steady-state ion transport by nonactin and trinactin. Biochim Biophys Acta. 1975 Feb 14;375(3):350–362. doi: 10.1016/0005-2736(75)90352-1. [DOI] [PubMed] [Google Scholar]
  27. Hladky S. B. Tests of the carrier model for ion transport by nonactin and trinactin. Biochim Biophys Acta. 1975 Feb 14;375(3):327–349. doi: 10.1016/0005-2736(75)90351-x. [DOI] [PubMed] [Google Scholar]
  28. Hladky S. B. The energy barriers to ion transport by nonactin across thin lipid membranes. Biochim Biophys Acta. 1974 May 30;352(1):71–85. doi: 10.1016/0005-2736(74)90180-1. [DOI] [PubMed] [Google Scholar]
  29. Hladky S. B. The steady-state theory of the carrier transport of ions. J Membr Biol. 1972;10(1):67–91. doi: 10.1007/BF01867848. [DOI] [PubMed] [Google Scholar]
  30. Hofmann W. W., Alston W., Rowe G. A study of individual neuro-muscular junctions in myotonia. Electroencephalogr Clin Neurophysiol. 1966 Dec;21(6):521–537. doi: 10.1016/0013-4694(66)90171-4. [DOI] [PubMed] [Google Scholar]
  31. Katz U. Changes in ionic conductances and in sensitivity to amiloride during the natural moulting cycle of toad skin (Bufo viridis, L.). J Membr Biol. 1978 Jan 12;38(1-2):1–9. doi: 10.1007/BF01875159. [DOI] [PubMed] [Google Scholar]
  32. Krasne S., Eisenman G. Influence of molecular variations of ionophore and lipid on the selective ion permeability of membranes: I. Tetranactin and the methylation of nonactin-type carriers. J Membr Biol. 1976 Dec 25;30(1):1–44. doi: 10.1007/BF01869658. [DOI] [PubMed] [Google Scholar]
  33. Kuo K. H., Bruner L. J. Modification of valinomycin-mediated bilayer membrane conductance by 4,5,6,7-tetrachloro-2-methylbenzimidazole. J Membr Biol. 1976 May;26(4):385–403. doi: 10.1007/BF01868885. [DOI] [PubMed] [Google Scholar]
  34. Kuo K. H., Fukuto T. R., Miller T. A., Bruner L. J. Blocking of valinomycin-mediated bilayer membrane conductance by substituted benzimidazoles. Biophys J. 1976 Feb;16(2 Pt 1):143–150. doi: 10.1016/s0006-3495(76)85671-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Laprade R., Ciani S., Eisenman G., Szabo G. The kinetics of carrier-mediated ion permeation in lipid bilayers and its theoretical interpreatation. Membranes. 1975;3:127–214. [PubMed] [Google Scholar]
  36. Le Blanc O. H., Jr Tetraphenylborate conductance through lipid bilayer membranes. Biochim Biophys Acta. 1969;193(2):350–360. doi: 10.1016/0005-2736(69)90195-3. [DOI] [PubMed] [Google Scholar]
  37. Liberman E. A., Topaly V. P. Pronitsaemost' bimolekuliarnykh fosfolipidnykh membran dlia zhirorastvorimykh ionov. Biofizika. 1969 May-Jun;14(3):452–461. [PubMed] [Google Scholar]
  38. Markin V. S., Sokolov V. S., Bogulavsky L. I., Jaguzhinsky L. S. Nigericin-induced charge transfer across membranes. J Membr Biol. 1975 Dec 4;25(1-2):23–45. doi: 10.1007/BF01868566. [DOI] [PubMed] [Google Scholar]
  39. McLaughlin S., Bruder A., Chen S., Moser C. Chaotropic anions and the surface potential of bilayer membranes. Biochim Biophys Acta. 1975 Jun 25;394(2):304–313. doi: 10.1016/0005-2736(75)90267-9. [DOI] [PubMed] [Google Scholar]
  40. McLaughlin S. The mechanism of action of DNP on phospholipid bilayer membranes. J Membr Biol. 1972;9(4):361–372. [PubMed] [Google Scholar]
  41. Melnik E., Latorre R., Hall J. E., Tosteson D. C. Phloretin-induced changes in ion transport across lipid bilayer membranes. J Gen Physiol. 1977 Feb;69(2):243–257. doi: 10.1085/jgp.69.2.243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Neumcke B. The action of uncouplers on lipid bilayer membranes. Membranes. 1975;3:215–253. [PubMed] [Google Scholar]
  43. Smejtek P., Hsu K., Perman W. H. Electrical conductivity in lipid bilayer membranes induced by pentachlorophenol. Biophys J. 1976 Apr;16(4):319–336. doi: 10.1016/S0006-3495(76)85691-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Wang C. C., Bruner L. J. Lipid-dependent and phloretin-induced modifications of dipicrylamine adsorption by bilayer membranes. Nature. 1978 Mar 16;272(5650):268–270. doi: 10.1038/272268a0. [DOI] [PubMed] [Google Scholar]
  45. White S. H. The surface charge and double layers of thin lipid films formed from neutral lipids. Biochim Biophys Acta. 1973 Oct 25;323(3):343–350. doi: 10.1016/0005-2736(73)90180-6. [DOI] [PubMed] [Google Scholar]
  46. Wulf J., Benz R., Pohl W. G. Properties of bilayer membranes in the presence of dipicrylamine. A comparative study by optical absorption and electrical relaxation measurements. Biochim Biophys Acta. 1977 Mar 17;465(3):429–442. doi: 10.1016/0005-2736(77)90262-0. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES