Abstract
Studies were done to investigate the transepithelial current-voltage (IT-VT) relationships of urinary bladder and colon of the toad Bufo marinus. Like several other Na transporting epithelia, the IT-VT plots characteristically showed a break at voltage E1, averaging near 124 mV for urinary bladder and 110 mV for colon. With bladders treated with antidiuretic hormone, estimates of ENa and shunt resistance, Rs, were obtained according to a method outlined by Yonath and Civan, 1971 (J Membr. Biol. 5:336-385). Our results not only confirmed their observations, but were consistent with the notion that the values of E1 (IT-VT plots) were the same as those of ENa. In addition, the values of Rs were found to be the same as those estimated from the quotient E1/I1 obtained from the voltage and current coordinates at the break of the IT-VT plot of bladders studied in both stretched and unstretched states. Amiloride at concentrations up to 10(-5) M caused a small decrease of both E1 and E1/I1 of urinary bladder. Similarly, amiloride caused small but significant changes of ENa and RNa of the colon. For both epithelia, the values of E1 and E1/I1 of the IT-VT plots were the same as those of ENa and Rs estimated by an independent method. In general, these findings are similar to those of several other epithelia where the ENa and Rs can be estimated directly from their IT-VT relationships.
Full text
PDF





















Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Chen J. S., Walser M. Passive ion fluxes across toad bladder. J Membr Biol. 1974;18(3-4):365–378. doi: 10.1007/BF01870123. [DOI] [PubMed] [Google Scholar]
- Civan M. M. Effects of active sodium transport on current-voltage relationship of toad bladder. Am J Physiol. 1970 Jul;219(1):234–245. doi: 10.1152/ajplegacy.1970.219.1.234. [DOI] [PubMed] [Google Scholar]
- Civan M. M., Kedem O., Leaf A. Effect of vasopressin on toad bladder under conditions of zero net sodium transport. Am J Physiol. 1966 Sep;211(3):569–575. doi: 10.1152/ajplegacy.1966.211.3.569. [DOI] [PubMed] [Google Scholar]
- Cuthbert A. W. Evidence for multiple forms of receptors for amiloride in transporting epithelia. Eur J Pharmacol. 1973 Aug;23(2):187–190. doi: 10.1016/0014-2999(73)90055-1. [DOI] [PubMed] [Google Scholar]
- Finn A. L., Hutton S. A. Absence of edge damage in toad urinary bladder. Am J Physiol. 1974 Oct;227(4):950–953. doi: 10.1152/ajplegacy.1974.227.4.950. [DOI] [PubMed] [Google Scholar]
- Helman S. I., Fisher R. S. Microelectrode studies of the active Na transport pathway of frog skin. J Gen Physiol. 1977 May;69(5):571–604. doi: 10.1085/jgp.69.5.571. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Helman S. I., Miller D. A. In vitro techniques for avoiding edge damage in studies of frog skin. Science. 1971 Jul 9;173(3992):146–148. doi: 10.1126/science.173.3992.146. [DOI] [PubMed] [Google Scholar]
- Helman S. I., Nagel W., Fisher R. S. Ouabain on active transepithelial sodium transport in frog skin: studies with microelectrodes. J Gen Physiol. 1979 Jul;74(1):105–127. doi: 10.1085/jgp.74.1.105. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Helman S. I., O'Neil R. G., Fisher R. S. Determination of the ENa of from skin from studies of its current-voltage relationship. Am J Physiol. 1975 Oct;229(4):947–951. doi: 10.1152/ajplegacy.1975.229.4.947. [DOI] [PubMed] [Google Scholar]
- Helman S. I., O'Neil R. G. Model of active transepithelial Na and K transport of renal collecting tubules. Am J Physiol. 1977 Dec;233(6):F559–F571. doi: 10.1152/ajprenal.1977.233.6.F559. [DOI] [PubMed] [Google Scholar]
- Hong C. D., Essig A. Effects of 2-deoxy-D-glucose, amiloride, vasopressin, and ouabain on active conductance and ENa in the toad bladder. J Membr Biol. 1976 Aug 26;28(2-3):121–142. doi: 10.1007/BF01869693. [DOI] [PubMed] [Google Scholar]
- Lief P. D., Mutz B. F., Bank N. Effect of stretch on passive transport in toad urinary bladder. Am J Physiol. 1976 Jun;230(6):1722–1729. doi: 10.1152/ajplegacy.1976.230.6.1722. [DOI] [PubMed] [Google Scholar]
- Nagel W. The intracellular electrical potential profile of the frog skin epithelium. Pflugers Arch. 1976 Sep 30;365(2-3):135–143. doi: 10.1007/BF01067010. [DOI] [PubMed] [Google Scholar]
- O'Neil R., Helman S. I. Influence of vasopressin and amiloride on shunt pathways of frog skin. Am J Physiol. 1976 Jul;231(1):164–173. doi: 10.1152/ajplegacy.1976.231.1.164. [DOI] [PubMed] [Google Scholar]
- Saito T., Lief P. D., Essig A. Conductance of active and passive pathways in the toad bladder. Am J Physiol. 1974 Jun;226(6):1265–1271. doi: 10.1152/ajplegacy.1974.226.6.1265. [DOI] [PubMed] [Google Scholar]
- USSING H. H., ZERAHN K. Active transport of sodium as the source of electric current in the short-circuited isolated frog skin. Acta Physiol Scand. 1951 Aug 25;23(2-3):110–127. doi: 10.1111/j.1748-1716.1951.tb00800.x. [DOI] [PubMed] [Google Scholar]
- Walser M., Butler S. E., Hammond V. Reversible stimulation of sodium transport in the toad bladder by stretch. J Clin Invest. 1969 Sep;48(9):1714–1723. doi: 10.1172/JCI106137. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walser M. Role of edge damage in sodium permeability of toad bladder and a means of avoiding it. Am J Physiol. 1970 Jul;219(1):252–255. doi: 10.1152/ajplegacy.1970.219.1.252. [DOI] [PubMed] [Google Scholar]