Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1979 Oct;28(1):93–105. doi: 10.1016/S0006-3495(79)85161-9

Viscoelastic behavior of mammalian DNA.

E S Chase, R H Shafer
PMCID: PMC1328612  PMID: 45402

Abstract

The viscoelastic behavior of rat 9L cellular DNA was studied as a function of the detergent used for lysis, the pH and duration of lysis, and gamma ray dose. For nondenaturing lysis conditions, a model of the DNA was proposed to account for the effects of these agents on the viscoelastic retardation time. It was concluded that these agents affect the hydrodynamic radius of the DNA rather than its molecular weight. For denaturing lysis conditions, molecular weights calculated from the relaxation time were consistent with those calculated from alkaline sucrose sedimentation profiles.

Full text

PDF
93

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahnström G., Erixon K. Radiation induced strand breakage in DNA from mammalian cells. Strand separation in alkaline solution. Int J Radiat Biol Relat Stud Phys Chem Med. 1973 Mar;23(3):285–289. doi: 10.1080/09553007314550311. [DOI] [PubMed] [Google Scholar]
  2. Cleaver J. E. Conformation of DNA in alkaline sucrose: the subunit hypothesis in mammalian cells. Biochem Biophys Res Commun. 1974 Jul 10;59(1):92–99. doi: 10.1016/s0006-291x(74)80179-8. [DOI] [PubMed] [Google Scholar]
  3. Cleaver J. E. Sedimentation of DNA from human fibroblasts irradiated with ultraviolet light: possible detection of excision breaks in normal and repair-deficient xeroderma pigmentosum cells. Radiat Res. 1974 Feb;57(2):207–227. [PubMed] [Google Scholar]
  4. Cook P. R., Brazell I. A. Conformational constraints in nuclear DNA. J Cell Sci. 1976 Nov;22(2):287–302. doi: 10.1242/jcs.22.2.287. [DOI] [PubMed] [Google Scholar]
  5. Cook P. R., Brazell I. A., Jost E. Characterization of nuclear structures containing superhelical DNA. J Cell Sci. 1976 Nov;22(2):303–324. doi: 10.1242/jcs.22.2.303. [DOI] [PubMed] [Google Scholar]
  6. Cook P. R., Brazell I. A. Supercoils in human DNA. J Cell Sci. 1975 Nov;19(2):261–279. doi: 10.1242/jcs.19.2.261. [DOI] [PubMed] [Google Scholar]
  7. Dingman C. W., Kakunaga T. DNA strand breaking and rejoining in response to ultraviolet light in normal human and xeroderma pigmentosum cells. Int J Radiat Biol Relat Stud Phys Chem Med. 1976 Jul;30(1):55–66. doi: 10.1080/09553007614550801. [DOI] [PubMed] [Google Scholar]
  8. Elkind M. M. Sedimentation of DNA released from Chinese hamster cells. Biophys J. 1971 Jun;11(6):502–520. doi: 10.1016/S0006-3495(71)86231-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hancock R. Interphase chromosomal deoxyribonucleoprotein isolated as a discrete structure from cultured cells. J Mol Biol. 1974 Jul 5;86(3):649–663. doi: 10.1016/0022-2836(74)90187-9. [DOI] [PubMed] [Google Scholar]
  10. Hoskins G. C. Sensitivity of micrurgically removed chromosomal spindle fibres to enzyme disruption. Nature. 1968 Feb 24;217(5130):748–750. doi: 10.1038/217748a0. [DOI] [PubMed] [Google Scholar]
  11. Ide T., Nakane M., Anzai K., Ando T. Supercoiled DNA folded by non-histone proteins in cultured mammalian cells. Nature. 1975 Dec 4;258(5534):445–447. doi: 10.1038/258445a0. [DOI] [PubMed] [Google Scholar]
  12. Klotz L. C., Zimm B. H. Size of DNA determined by viscoelastic measurements: results on bacteriophages, Bacillus subtilis and Escherichia coli. J Mol Biol. 1972 Dec 30;72(3):779–800. doi: 10.1016/0022-2836(72)90191-x. [DOI] [PubMed] [Google Scholar]
  13. Kohn K. W., Erickson L. C., Ewig R. A., Friedman C. A. Fractionation of DNA from mammalian cells by alkaline elution. Biochemistry. 1976 Oct 19;15(21):4629–4637. doi: 10.1021/bi00666a013. [DOI] [PubMed] [Google Scholar]
  14. Lauer G. D., Roberts T. M., Klotz L. C. Determination of the nuclear DNA content of Saccharomyces cerevisiae and implications for the organization of DNA in yeast chromosomes. J Mol Biol. 1977 Aug 25;114(4):507–526. doi: 10.1016/0022-2836(77)90175-9. [DOI] [PubMed] [Google Scholar]
  15. Linn J. D., Wheeler K. T. Alkali unwinding kinetics of mammalian DNA in a simulated viscoelastometry experiment. Biochem Biophys Res Commun. 1975 Sep 16;66(2):712–716. doi: 10.1016/0006-291x(75)90568-9. [DOI] [PubMed] [Google Scholar]
  16. Palcic B., Skarsgard L. D. The effect of oxygen on DNA single-strand breaks produced by ionizing radiation in mammalian cells. Int J Radiat Biol Relat Stud Phys Chem Med. 1972 May;21(5):417–433. doi: 10.1080/09553007214550501. [DOI] [PubMed] [Google Scholar]
  17. Raub W. F. The PROPHET system and resource sharing. Fed Proc. 1974 Dec;33(12):2390–2392. [PubMed] [Google Scholar]
  18. Roberts T. M., Klotz L. C., Loeblich A. R., 3rd Characterization of a blue-green algal genome. J Mol Biol. 1977 Feb 25;110(2):341–361. doi: 10.1016/s0022-2836(77)80076-4. [DOI] [PubMed] [Google Scholar]
  19. Rydberg B. The rate of strand separation in alkali of DNA of irradiated mammalian cells. Radiat Res. 1975 Feb;61(2):274–287. [PubMed] [Google Scholar]
  20. STUDIER F. W. SEDIMENTATION STUDIES OF THE SIZE AND SHAPE OF DNA. J Mol Biol. 1965 Feb;11:373–390. doi: 10.1016/s0022-2836(65)80064-x. [DOI] [PubMed] [Google Scholar]
  21. Uhlenhopp E. L. Viscoelastic analysis of high molecular weight, alkali-denatured DNA from mouse 3T3 cells. Biophys J. 1975 Mar;15(3):233–237. doi: 10.1016/S0006-3495(75)85814-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Wang T. S., Wheeler K. T. Repair of X-ray-induced DNA damage in rat cerebellar neurons and brain tumor cells. Radiat Res. 1978 Mar;73(3):464–475. [PubMed] [Google Scholar]
  23. Wheeler K. T., DeWitt J., Lett J. T. A marker for mammalian DNA sedimentation. Radiat Res. 1974 Mar;57(3):365–378. [PubMed] [Google Scholar]
  24. Wheeler K. T., Linn J. D., Franklin R., Pautler E. L. Characterization of large mammalina DNA species sedimented in a reorienting zonal rotor. Anal Biochem. 1975 Apr;64(2):329–342. doi: 10.1016/0003-2697(75)90440-6. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES